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Abstract

Background: The continuing discovery of new types and functions of small non-coding RNAs is suggesting the
presence of regulatory mechanisms far more complex than the ones currently used to study and design Gene
Regulatory Networks. Just focusing on the roles of micro RNAs (miRNAs), they have been found to be part of
several intra-pathway regulatory motifs. However, inter-pathway regulatory mechanisms have been often neglected
and require further investigation.

Results: In this paper we present the result of a systems biology study aimed at analyzing a high-level
inter-pathway regulatory motif called Pathway Protection Loop, not previously described, in which miRNAs seem to
play a crucial role in the successful behavior and activation of a pathway. Through the automatic analysis of a large
set of public available databases, we found statistical evidence that this inter-pathway regulatory motif is very
common in several classes of KEGG Homo Sapiens pathways and concurs in creating a complex regulatory network
involving several pathways connected by this specific motif. The role of this motif seems also confirmed by a
deeper review of other research activities on selected representative pathways.

Conclusions: Although previous studies suggested transcriptional regulation mechanism at the pathway level such
as the Pathway Protection Loop, a high-level analysis like the one proposed in this paper is still missing. The
understanding of higher-level regulatory motifs could, as instance, lead to new approaches in the identification of
therapeutic targets because it could unveil new and “indirect” paths to activate or silence a target pathway.
However, a lot of work still needs to be done to better uncover this high-level inter-pathway regulation including
enlarging the analysis to other small non-coding RNA molecules.
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Background
Systems biology is increasingly highlighting that a
discrete biological function can only rarely be attributed
to a single molecule. Instead, most biological character-
istics arise from complex interactions among the cell’s
numerous constituents, such as proteins, DNA, RNA
and small molecules [1-3]. Understanding the structure
and the dynamics of complex intercellular networks that
contribute to the structure and function of a living cell
is therefore mandatory.
The fast development of technologies to collect high-

throughput biological data allows us to determine how
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different molecules interact with each other, leading to
a proliferation of biological networks (e.g., protein-protein
interaction, metabolic, signaling and transcription-regulatory
networks). Several public and commercial network reposi-
tories including the WikiPathway database [4,5], the
Ingenuity database [6], and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [7,8], collect large amount
of curated biological networks that can be explored and
analyzed for high-level systemic analysis. None of these
networks is independent, instead they form a complex
network of networks that is responsible for the behavior
of the cell. In this paper we concentrate on the key role
that small non-coding RNAs, and in particular micro
RNAs (miRNAs), have in this intricate biological network
of networks.
Several results have been achieved in the past few

years from the research of recurrent motifs in complex
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Gene Regulation Networks [9-18], highlighting the cen-
tral role of miRNAs in governing specific regulation
mechanisms at the network level [19-22]. In order to
move toward the identification of higher-level mecha-
nisms of transcriptional regulation, in this paper we per-
formed a systemic analysis on a large set of well known
biological networks to underline the presence of an
inter-network regulatory motif in which miRNAs seem
involved in a high-level regulatory activity among differ-
ent networks. Rather then searching for pure topological
motifs, available networks have been enriched with bio-
logical information from several public repositories to
attempt to link obtained results to selected biological
mechanisms [23].
Figure 1 shows the structure of the investigated net-

work motif. According to this motif, the successful full
activation of a regulatory network (pathway) not only
depends on the correct expression of the pathway’s
genes, but also on the expression of other genes poten-
tially belonging to different networks that could interfere
or dysregulate (down-regulate or silence) the pathway at
some point. We call these genes the Pathway Antagonist
Genes (PAGs). A possible way PAGs may interfere with
the activity of a pathway is to express a set of miRNAs,
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Figure 1 Pathway Protection Loop. Pathway Protection Loop (solid lines
1) an activated pathway is host of one or more intragenic miRNAs that are
target one or more PATF; 3) the down-regulated PATFs down-regulate the
express the Antagonist miRNAs; 5) the down-regulation of the pathway ge
in this context called Antagonist miRNAs, targeting and
down-regulating some of the pathway’s genes. Interest-
ingly, we discovered that, in several analyzed networks,
the pathway intragenic miRNAs target and silence the
transcription factors of the PAGs, thus creating a loop
that seems designed to prevent PAGs from interfering
with the pathway expression process. Given this charac-
teristic we named this motif as Pathway Protection Loop
(PPL).
When a PPL is present, its action is carried out in the

following steps:

1. When the pathway is activated, one or more pathway
genes co-express one or more intragenic miRNAs.

2. The intragenic miRNAs expressed by the pathway
target one or more transcription factors of some of
the PAGs. We call these transcription factors
Pathway Antagonist Transcription Factors (PATFs).
In some situations, the pathway intragenic miRNA
may also target the pathway itself, but this
mechanism belongs to well-studied intra-pathway
regulations that are not the focus of this work.

3. The down-regulation of the PATFs has a repressive
effect on the expression of the corresponding PAGs.
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4. Down-regulated PAGs have lower ability to express
the Antagonist miRNAs. It is worth here to
remember that miRNAs have a post-transcriptional
regulation role. Intragenic miRNAs that directly
target the PAGs would not actually prevent the
production of the related Antagonist miRNAs since
miRNAs are expressed during transcription. The
only way PPLs can form is therefore by mediating
the PAGs down-regulation through their
corresponding PATFs [24].

5. The reduced presence of Antagonist miRNAs
contributes to the successful expression of the
pathway genes, thus closing the protection loop.

An interesting characteristic of PPL is its hierarchical
structure: a very small number of intragenic miRNAs
(usually one or two) is able to “defend” the expression of
either a large number or even the most important path-
way genes.
This paper proposes an extensive systems biology

study to analyze the existence and the characteristics of
this new motif on a large set of public available net-
works. Results will show statistical evidence that this
inter-network regulatory motif is very common in sev-
eral classes of considered networks, and it can be used
to identify an intricate set of links among networks thus
building a high-level pathway to pathway interaction
network. Finally, to further support the proposed re-
search activity, literature mining allowed us to find clues
of possible dysregulated PPLs in several papers targeting
the study of tumors [25,26].

Results and discussion
To assess the presence of PPLs we analyzed a set of net-
works for the Homo Sapiens species available in the
KEGG database [8].
The KEGG database contains a set of 203 networks re-

lated to the Homo Sapiens species and represents one of
the most curated and reliable source of pathway infor-
mation. KEGG is unique for its focus and coverage of
yeast, mouse, and human metabolic and signaling path-
ways [27]. All 203 pathways have been carefully analyzed
in order to keep only representative and reliable net-
works. Human disease pathways have been excluded
from the analysis since they represent deviations from
correct behaviors that may change the mechanisms re-
sponsible for the formation of PPLs. Moreover, a set of
few additional pathways not actually containing a regula-
tory network have been excluded, obtaining a final set of
158 pathways available for the analysis. All these 158
pathways have been manually checked and are all regu-
latory sub-networks. Each is, of course, part of THE
regulatory network including the whole genome. Never-
theless, the separation in single “functional” pathways is
necessary to make the problem manageable with the
current tools.
The final set of considered KEGG pathways is reported

in the two files Additional file 1 and Additional file 2
provided as additional files to this paper. The KEGG
pathway repository contains several classes of networks
describing a very large set of biological processes. The
type of biological process, and consequently the involved
actors (e.g., genes, proteins, metabolites, etc.) may bias
the presence or the absence of PPLs. It has therefore
been taken into account in our analysis. KEGG already
categorizes all pathways according to a hierarchical
ontology called the KEGG BRITE hierarchy. We exploi-
ted the first hierarchical level of this ontology to cluster
all considered pathways into two main categories related
to the ability of the corresponding nodes to be involved
in miRNA mediated regulatory processes as will be dis-
cussed in the Statistical Analysis section. The first cat-
egory contains 107 metabolic pathways while the second
category contains 51 non-metabolic pathways (9 from
KEGG cellular processes classification, 16 from KEGG
environmental information processes classification, 6
from KEGG genetic information processes classification
and 20 from KEGG organismal systems classification).
All pathways have been analyzed to search for the

presence of PPLs resorting to a bioinformatics pipeline
featuring the aggregation of information from several
public on-line biological databases (see the Materials
and methods section). To statistically analyze the exist-
ence of PPLs in the selected pathways we compared
the obtained results with the ones gathered analyzing a
population of randomly generated pathways. We gener-
ated a random population of 100 randomized networks.
The size of each random network has been selected by
first computing the mean (μsize) and the standard devi-
ation (σsize) of the size of all networks in the KEGG data-
set and by sampling a Normal distribution N(μsize, σsize)
to obtain random network sizes comparable with the
real ones. Genes composing each network have been
then randomly selected from the Sanger Genecode data-
base release 9 (Sanger) [28].

Statistical analysis
We analyzed data obtained from our analysis using the
R language and its environment for statistical computing
[29]. The full set of analyzed data is available in the files
Additional file 1 and Additional file 2 provided as add-
itional files to this paper.
We first investigated if there is significant statistical dif-

ference in the frequency pathways manifest a PPL among
the three considered groups of pathways (metabolic, non-
metabolic, and random). Table 1 reports the contingency
matrix indicating the frequency in which PPLs manifest in
the three considered groups. A pathway is counted in the



Table 1 Statistical analysis of PPL occurrence in pathways
(mirSVR < −0.3): PPL occurrence contingency matrix

Group of
pathways

Presence of loops Total

L NL

#Metabolic 10 (9.3), [15.8] 97 (90.7), [49.7] 107

#Non-metabolic 28 (54.9), [44.4] 23 (45.1), [11.8] 51

#Random 25 (25), [39.8] 75 (75), [38.5] 100

Total 63 195

Rows indicate the three groups of pathways while columns indicate pathways
manifesting PPLs (L) and pathways where PPLs have not been found (NL).
Frequencies have been calculated considering miRNA targets with
mirSVR < −0.3.
() = percentage in rows; [] = percentage in columns.
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L column if it manifests at least one PPL, otherwise it is
counted in the NL column. The number of PPLs observed
in a pathway is not taken into account at this stage but it
will be analyzed later in this section. Since miRNAs play a
pivotal role in the formation of a PPL, the way miRNA tar-
gets are selected must be carefully taken into account. As
better explained in the Materials and methods section, we
search for potential miRNA targets resorting to micro-
RNA.org, which performs this operation applying a com-
putational approach providing a score (mirSVR score) to
measure the reliability of each prediction. In order to re-
duce false positives at minimum, we restricted our target
search to the mirSVR predictions labeled as “Good mirSVR
score, Conserved miRNA” and “Good mirSVR score, Non-
conserved miRNA” that represent the most reliable pre-
dictions available into microRNA.org. Moreover, we further
restricted miRNA targets only considering high-score
predictions (mirSVR < −0.3, see Materials and methods
section), taking into consideration the aggregated data
provided in the Additional file 1.
In order to find relationships among groups of path-

ways, frequencies reported in Table 1 have been analyzed
with pairwise Pearson’s Chi-squared test using the R
chisq.test command. Furthermore, Holms adjustment of
the obtained p-values [30] has been carried out with the
p.adjust procedure (see Table 2).
Pearson’s Chi-squared test among the three groups

points out that there is significant statistical dependence
Table 2 Pairwise Pearson’s Chi-square tests among all
possible pairs of pathway groups (i.e., non-metabolic vs.
random, metabolic vs. non-metabolic and metabolic vs.
random) for PPLs identified with mirSVR < −0.3. p-values
have been adjusted applying Holms adjustment

Metabolic Non-metabolic

Non-metabolic χ2 = 36.7867

p = 3.953649 × 10-09

Random χ2 = 7.9363 χ2 = 11.9768

p = 4.845243 × 10-03 p = 1.077333 × 10-03
between rows and columns of the contingency matrix re-
ported in Table 1 (χ2 = 38.8678, d.f. 2, p = 3.631× 10-09),
thus confirming our hypothesis that PPLs manifest with
different frequencies based on the considered groups. To
better understand where differences among groups lie,
post-hoc analysis has been performed. We performed a
chi-squared test considering all possible pairs of groups
(i.e., non-metabolic vs. random, metabolic vs. non-
metabolic and metabolic vs. random). Analyzing the
obtained results reported in Table 2, we noticed that
pathways including PPLs appear with a significant higher
frequency in non-metabolic pathways (55%) than in meta-
bolic pathways (9%) (χ2 = 36.7867, p = 3.953649 × 10-09).
This insight is in accordance with the study done in [31],
that suggests the presence of a “universe” of miRNAs
deeply involved in the regulation of signaling pathways,
which represent a large portion of the non-metabolic
pathways group. Overall, considering KEGG signaling
pathways only, about 71% of them contain PPLs. Instead,
as expected, metabolic pathways exhibit a reduced per-
centage of PPLs due to the high presence of metabolites in
their nodes, which are unable to express pathway intra-
genic miRNAs that are responsible for the creation of
PPLs. Pathways including PPLs also appear with signifi-
cant higher frequency in non-metabolic pathways (55%)
than in random pathways (25%) (χ2 = 11.9768, p =
1.077333 × 10-03) confirming our hypothesis that the es-
tablishment of this motif is not due to chance. Moreover,
the frequency of pathways with PPLs is higher in the ran-
dom group compared to the metabolic group (χ2 = 7.9363,
p = 4.845243 × 10-03). Again, this is non surprising at all.
As already stated, metabolic pathways are in large part
formed by metabolites unable to express the intragenic
miRNAs required to create a PPL. Differently, random
pathways include nodes which are randomly sampled
from the full set of genes available in the Sanger Genecode
database and have a higher probability to include genes
expressing miRNAs potentially able to establish a PPL.
To further analyze the characteristics of the proposed

motif, we also investigated if we can observe statistical
difference in the number of PPLs per pathway among
the different groups (this information is available in the
Additional file 1). We analyzed the distribution of this
variable for Normality with the Kolmogorov-Smirnov
test using the R lillie.test procedure. The result con-
firmed the lack of normality (D = 0.4335, p < 2.2 × 10-16).
Eventually, the Kruskal-Wallis test, a non-parametric
analysis of variance [32], has been performed resorting
to the R kruskal.test procedure.
Kruskal-Wallis rank sum test underlines that there is

statistical difference in the number of loops among the
three groups of pathways (H = 37.6374, d.f. 2, p = 6.716 ×
10-09). Again to better understand the differences among
the different groups we performed post-hoc analysis



Table 4 Statistical analysis of PPL occurrence in pathways
(mirSVR < −0.6): PPL occurrence contingency matrix

Group of
pathways

Presence of loops Total

L NL

#Metabolic 7 (6.5), [14.0] 100 (93.5), [48.08] 107

#Non-metabolic 24 (47.05), [48.0] 27 (52.95), [12.98] 51

#Random 19 (19), [38.00] 81 (81), [38.94] 100

Total 50 208

Rows indicate the three groups of pathways while columns indicate pathways
manifesting PPLs (L) and pathways where PPLs have not been found (NL).
Frequencies have been calculated considering miRNA targets
with mirSVR < −0.6.
() = percentage in rows; [] = percentage in columns.
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running a set of Mann–Whitney U tests among pairs of
different groups applying Holms p-value adjustment
resorting to the R pairwise.wilcox.test procedure. Results
of this analysis, reported in Table 3 once more, confirm
that non-metabolic pathways manifest a higher number of
PPLs compared to both metabolic (p = 1.0 × 10-09) and
random (p = 0.0028) pathways. The same way, metabolic
pathways manifest a lower number of loops compared to
random pathways (p = 0.0028) further confirming the pre-
vious analysis on frequency of networks manifesting PPLs.
As previously mentioned, it is clear that the reliability of

our findings may also depend on the reliability of the
miRNA target predictions, since the more targets are con-
sidered the more loops may appear. Although in our ana-
lysis we already restricted the set of considered targets in
microRNA.org and we further filtered targets selecting
only those with mirSVR < −0.3, to better understand this
bias, we repeated the overall PPL identification and the re-
lated statistical comparison with randomized networks
considering an increased cut-off value for miRNA target
prediction scores (mirSVR < −0.6) thus reducing the
number of predicted targets. Aggregated data for this
mirSVR threshold are available in the Additional file 2
and the related statistical analysis is reported in Tables 4,
5 and 6. The statistical analysis performed on these ag-
gregated data confirms the results obtained with the
mirSVR < −0.3 threshold.
Pearson’s Chi-squared test on the contingency matrix

reported in Table 4, that indicates the frequency in
which PPLs manifest in the three considered groups of
pathways with this new mirSVR threshold, still confirms
that there is significant statistical dependence between
rows and columns (χ2 = 36.3039, d.f. 2, p = 1.308 × 10-08),
thus confirming that even reducing the set of miRNA
targets to the ones with higher score we still observe
that PPLs manifest with different frequencies based on
the considered groups. Table 5 further confirms this result
when post-hoc analysis is performed to analyze differences
among pairs of groups. Finally, Kruskal-Wallis rank sum
test on the number of loops among the three groups of
pathways confirms statistical differences also in this case
(H = 34.1145, d.f. 2, p = 3.91 × 10-08), and this difference is
confirmed also in Table 6 when Mann–Whitney U tests
Table 3 Mann–Whitney U test on the PPL numerosity
among all possible pairs of pathway groups (i.e.,
non-metabolic vs. random, metabolic vs. non-metabolic
and metabolic vs. random) for PPLs identified with
mirSVR < −0.3. p-values have been adjusted applying
Holms adjustment

Metabolic Non-metabolic

Non-metabolic p = 1.0 × 10-09

Random p = 0.0028 p = 0.0028
are used for post-hoc analysis among the different pairs of
groups.
This outcome is particularly interesting since it high-

lights that the identified PPLs mainly involve high-score
miRNA gene predictions, thus adding reliability to our
findings.

Interaction among networks
After performing statistical analysis on the presence of
PPLs in this section we analyze how PPLs actually con-
stitute a miRNA based inter-network regulation mech-
anism that can be used to build a complex network of
networks that involves several pathways. Starting from
the full list of identified PPLs that is available at http://
www.testgroup.polito.it/index.php/component/k2/item/
184-ppl-list we built the network reported in Figure 2
that is also available as a Cytoscape 2.8 session file in
the Additional file 3.
Each node of the network represents a KEGG path-

way. Two types of nodes are available: (1) hexagonal
nodes represent pathways in which PPLs have been de-
tected, (2) rhomboidal nodes are pathways in which no
PPLs have been detected but containing at least one
PAG. A directed weighted edge connects two pathways
if a PPL generated from the first pathway targets a PAG
contained in the second pathway. The weight of the
edges represents the number of PPLs connecting the
two pathways. Furthermore, each node is labeled with
Table 5 Pairwise Pearson’s Chi-square tests among all
possible pairs of pathway groups (i.e., non-metabolic vs.
random, metabolic vs. non-metabolic and metabolic vs.
random) for PPLs identified with mirSVR < −0.6. p-values
have been adjusted applying Holms adjustment

Metabolic Non-metabolic

Non-metabolic χ2 = 33.4281

p = 2.2218396 × 10-08

Random χ2 = 6.2143 χ2 = 11.7142

p = 1.26723 × 10-02 p = 1.240482 × 10-03

http://www.testgroup.polito.it/index.php/component/k2/item/184-ppl-list
http://www.testgroup.polito.it/index.php/component/k2/item/184-ppl-list
http://www.testgroup.polito.it/index.php/component/k2/item/184-ppl-list


Table 6 Mann–Whitney U test on the PPL numerosity
among all possible pairs of pathway groups (i.e.,
non-metabolic vs. random, metabolic vs. non-metabolic
and metabolic vs. random) for PPLs identified with
mirSVR < −0.6. p-values have been adjusted applying
Holms adjustment

Metabolic Non-metabolic

Non-metabolic p = 9.5 × 10-09

Random p = 0.0049 p = 0.0029

Figure 2 Network of pathways linked by PPLs. Network of pathways hi
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an additional parameter reporting the number of PAGs
of the pathway that have not been detected in any of the
KEGG pathways.
The network reported in Figure 2 clearly shows how

the PPL motif creates a very intricate regulatory mech-
anism among different pathways. 79 pathways are in-
volved in this mechanism and 552 edges identify
interactions between pathways involving at least a PPL.
By analyzing the nodes generating PPLs using the

Cytoscape network analyzer plugin, it is also possible to
highlight that on average, each pathway generating PPLs
is connected to 25.111 pathways thus confirming the
ghlighting the intricate regulation mechanism introduced by PPLs.
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complexity of the identified motif, which involves the
cooperation of several pathways.
This enforces the idea that miRNAs cover different,

and often even conflicting, roles in gene regulatory net-
works. From this perspective, we can identify three im-
portant and complementary roles for miRNAs in gene
regulation: the first is the well-known intra-pathway
regulatory role targeting genes belonging to the pathway
itself; the second is an inter-pathway down-regulatory
effect, where miRNAs expressed by a pathway directly
silence mRNAs from genes belonging to pathways that
may be biochemically or functionally incompatible with
the pathway that is being expressed; the third is an in-
direct up-regulatory function where miRNAs, thanks to
the PPL motif, indirectly contribute to the pathway up-
regulation by down-regulating the Transcription Factors
of its PAGs.
In the remaining of this paper two pathways manifest-

ing the PPL motif will be analyzed in detail. The full list
of pathways where PPLs have been identified has been
provided as additional material to this submission in the
form of dot graph files.

PPLs in mTOR signaling pathway
The simplicity of the PPL protection mechanism can be
appreciated in Figure 3, which shows the PPL detected in
the KEGG mTOR signaling pathway (#hsa04150 - http://
www.genome.jp/kegg-bin/show_pathway?hsa04150).
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The mTOR signaling pathway has been identified as a
hub. It integrates the output of several upstream path-
ways, including insulin, growth factors and amino acids
[33], as well as cellular nutrition, energy levels and redox
status [34]. The mTOR pathway is actually under the
analysis of several research units. Its pharmacological
targeting looks like an effective method for acting
against multiple types of cancer (e.g., leukemia, glioblast-
oma, myelodysplasia breast, hepatic and pancreatic
[35,36]), in which the mTOR pathway appears dysregu-
lated [37]. The mTOR pathway contains two main com-
plexes: mTORC1 and mTORC2. mTORC1 has been
largely analyzed, whereas mTORC2 (regulated by insu-
lin, growth factors, serum, and nutrient levels [38]) has
been less clearly investigated. In order to better under-
stand the role of the mTORC2 complex several knock-
outs experiments have been performed on its genes and
direct interactors. In particular, the RICTOR gene has
been highlighted as responsible for metastasis and inhib-
ition of growth factors [39]. Its down-regulation is dir-
ectly linked to the reduced phosphorylation of AKT and
PKC, which leads to an impaired differentiation of Th2
cells, producing IL-4, IL-5, IL-10, and IL-13, responsible
for strong antibody production, eosinophil activation,
and inhibition of several macrophage functions, provid-
ing phagocyte-independent protective responses [40].
Dysregulated type 1/type 2 cytokine production and
their skewed development have been implicated in the
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progression of multiple immune disorders including
asthma [41,42], leukemia [43], and other cancers [44]. This
also leads to a renewed interest in using type 1 and type 2
cytokines as markers of human immune function.
Interestingly, the RICTOR gene appears as an actor in

the PPL identified within the mTOR pathway. As shown
in Figure 3, the PPL is composed of a pathway host-gene
(RSK) expressing a protective intragenic miRNA (miR-
1976) which acts against the expression of the MLL tran-
scription factor. MLL is responsible for HOXA9 (one of
the PAGs) transcription, leading to the expression of miR-
196b (the Antagonist miRNA), which would target RIC-
TOR, if expressed, dysregulating the mTORC2 complex.
This result seems to strongly confirm the central role of
MLL, the HOXA cluster (HOXA9), and both miR-196b
and miR-1976 in Acute Lymphoblastic Leukemia (ALL),
as presented by Schotte et al. [25,45]. The PPL overall sug-
gests that aberrant miR-196b expression may in fact con-
tribute to leukemogenesis, as dysregulation of HOX genes
were shown to directly induce leukemia in mice [46]. The
results presented by Schotte et al. [25,45] may suggest that
many of the observed dysregulations are compatible with
disruption of the observed PPL. The common assumption
is that miRNAs discovered in a pathological context have
a dysregulatory role; in this case the PPL suggests instead
that miR-1976 [25] may have a protective role, and its
slight over expression may indicate the mTOR pathway at-
tempt to protect itself.
The most common pathological rearrangements of

MLL (t(4;11), t(11;19), t(9;11) and t(1;11)) may mislead
the proper miR-1976 regulatory function because the
MLL translocation may imply changes in its miRNAs
binding sites. Popovic et al. [47] showed that leuke-
mogenic MLL fusion proteins cause over- expression of
miR-196b, while treatment of MLL-AF9 transformed
bone marrow cells with miR-196 specific antagomir ab-
rogates their replating potential in methylcellulose. This
may suggest that miR-196b function is necessary for
MLL fusion-mediated immortalization and it may justify
the fact that the mTOR pathway protects itself by not
allowing its expression through the PPL. Similarly, the
same work shows that the level of miR-196b is decreased
up to 14-fold in the absence of MLL, thus confirming
the down-regulatory role of miR-1976 on MLL.
To further validate these observations, we analyzed the

expected level of expression of interactors in ALL disease
retrieved from Gene Expression Atlas (http://www.ebi.ac.
uk/gxa/). The expression of both RSK and RICTOR ap-
pears compatible with the identified PPL: (1) RSK (E-
MTAB-62 experiment, filtered by ALL) shows an upper
regulation in ALL (p = 0.002), and it may confirm the
attempt of the pathway to protect its correct behavior
maximizing the production of protective miR-1976 by
over-expressing its host gene; (2) RICTOR (E-MTAB-37
experiment, filtered by ALL) appears globally down (p =
9.07e − 4), accordingly with the observed miR-196b up-
regulation.
The reliability of our findings depends on the reliabil-

ity of the miRNA target predictions, since the more
targets are considered, the more loops may appear. In
order to consider only reliable predictions we filtered
miRNA targets for mirSVR score lower than −0.3 (see
Materials and methods section). Relaxing this threshold
may identify additional PPLs with weaker target affinity.
In this case, we identified three additional low-score
miR-1976 targets in the mTOR pathway, which are PAG
Transcription Factors involved in PPLs. However, their
role and possible involvement in the disease dynamics
are still under investigation.

PPLs in the antigen processing and presentation (APP)
pathway
Another very interesting example of pathway including
PPLs can be found in the antigen processing and pre-
sentation (APP) KEGG pathway (#hsa04612-http://www.
genome.jp/kegg-bin/show_pathway?hsa04612) reported in
Figure 4 that shows several PPLs. Identified PPLs are orig-
inated by NFY-C that co-expresses the intragenic miRNA
miR-30e which targets the STAT1 transcription factor.
STAT1 is responsible for the transcription of two PAGs
(1) RUNX and (2) UGT8, that respectively co-express
miR-802 and miR-577, responsible for the loop closure.
APP is composed of two inner pathways responsible

for synthesis of major histocompatibility complexes I
and II (MHCI and MHCII), which are responsible for
cell destruction (when MHCI expression is low) and spe-
cific immunization (MCHII).
The NFY complex is well known for peptide presenta-

tion in antigen presenting cells [48] and for being highly
enriched in specific phases of the cell-cycle [49], thus
playing a central role in cell control and maturation. The
identified PPLs look compatible with the NFY behavior
observed in mammals, in which the complex acts as an
on/off switch by post-transcriptional mechanisms, and
other more subtle post-translational regulations [50].
miR-30e, located in the intronic region of NFY-C and

co-transcribed with its host gene, has been highlighted
as responsible for maintaining differentiated cell pheno-
types. For instance, the knock out of miR-30 miRNA
family induces epithelial-mesenchymal transition of pan-
creatic islet cells [51]. Moreover, miR-30e is under-
expressed in breast, head, neck, and lung tumors, with
experimental evidences confirming that its ectopic ex-
pression suppresses uncontrolled cell growth [52]. This
regulatory role seems compatible with the PPL behavior
in which miR-30e is the only miRNA deputed to protect
the pathway. Thus, the miR-30e dysregulation may lead
to a wrong antigen exposition, which does not allow

http://www.ebi.ac.uk/gxa/
http://www.ebi.ac.uk/gxa/
http://www.genome.jp/kegg-bin/show_pathway?hsa04612
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Figure 4 Antigen processing and presentation (APP) pathway (#hsa04612). Antigen processing and presentation (APP) pathway
(#hsa04612) including the identified PPLs. The pathway host-gene (NFY-C) expresses a protective intragenic miRNA (miR-30e6) which (2) acts
against the expression of the STAT1 transcription factor. (3) STAT1 is responsible for RUNX and UGT8 transcription, that (4) leads to the expression
of miR-802 and miR-577 which, if expressed, (5) would target IFN-?, CANX, CALR, CTSB, RFX, HLA-DM, NFY-C.
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proper T cells to target the dysregulated cells, avoiding
apoptosis driven either by CD8+ or NK T cells [53].
miR-30e directly targets the STAT1 transcription factor

that belongs to the signal transducers and activators of
transcription family. STAT1 is involved in up-regulation of
genes (interferon stimulated genes) in response to differ-
ent interferon based stimulation. In particular, after IFN-γ
stimulation, STAT1 forms homodimers or heterodimers
with STAT3 for binding with GAS (interferon-gamma ac-
tivated sequence) promoter elements and their further
regulation [54]. This feedback loop targeting IFN-γ, may
suggest a fine tuning loop between IFN-γ and STAT1.
STAT1 promotes two PAGs: RUNX1 and UGT8.

RUNX1, also known as AML1 or CBFA2, is a transcription
factor that regulates the fate of hematopoietic stem cell
populations and is generally regulated by 2 enhancers,
which are tissue specific and drive the binding of lymphoid
or erythroid regulatory proteins [55]. RUNX1 takes part in
cell fate process mediating the transition of an endothelial
cell into a haematopoietic cell. Evidences in RUNX1 knock
out mice showed that primitive erythrocytes displayed a
defective morphology, and the size of blast cell population
was substantially reduced [56]. At least 39 forms of
RUNX1 mutations are implicated in various myeloid ma-
lignancies. Chromosomal translocations involving RUNX1
are associated with several types of leukemia including
AML [57]. As for MLL in the mTOR pathway previously
discussed (see sub-section PPLs in mTOR signaling path-
way), single nucleotide polymorphism (SNP), chimerism
and translocation may invalidate the standard PPL regula-
tion machinery, causing unexpected misbehaviors.
UGT8 encodes for an enzyme involved in glycosphin-

golipids synthesis, in particular galactosylceramides (Gal-
Cer lipids), which are involved in a variety of cellular
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processes including differentiation, cell-cell interaction,
and transmembrane signaling [58,59]. It is also notice-
able that UGT8 is mainly localized in the endoplasmic
reticulum, but not in the Golgi complex, nor in the
plasma membrane [60]. The same characteristic applies
to the final PPL target, the HLA-DM complex targeted
via miR-577, which is also only localized in the endo-
plasmic reticulum.
Furthermore, previous studies highlighted that an in-

duced dose-dependent inhibition of GalCer expression
on the cell surface, after treatment with recombinant
gamma-interferon (rIFN-γ), caused reduced viral (HIV-
1) infection by decreasing GalCer synthesis and expres-
sion [61]. This may be explained by a certain level of
competition between IFN-γ and UGT8, in accordance
with the identified PPL. As for RUNX1, also UGT8 is
known to have multiple non-synonymous SNPs which
could affect structures and/or biological functions of the
respective gene products [62].
miR-802, co-expressed with RUNX, targets multiple

pathway genes: IFN-γ, NFY-C, CANX, and the HLA-
DM complex. It is worth noticing that among its targets
we find NFY-C, which is responsible for the PPLs initi-
ation. CANX is a chaperone protein responsible for pro-
tein folding and quality control. It retains unfolded or
mis-folded proteins in the endoplasmic reticulum, in
order to have only well assembled proteins in the cyto-
plasm. CANX also controls the folding of the MHC class
I alpha chain. This central role in the MHCI synthesis
makes it a possible critical target in PPL dysregulation.
The HLA-DM protein, another chaperone, finally, is tar-
geted by both miR-802 and miR-577. HLA-DM regulates
the peptides that bind to MHCII, and controls/presents
the antigen in antigen presenting cells. It plays a central
role in the MHCII complex stability by favoring more
stable peptide-MHC complexes. Dysregulation of HLA-
DM is associated with negative prognosis in breast can-
cer, since patients with tumors that co-express HLA-DR,
Ii and HLA-DM have improved recurrence-free sur-
vival as compared with patients with tumors that ex-
press HLA-DR and Ii in the absence of HLA-DM [26],
and, accordingly to the discussion of miR-30e, HLA-
DM negative patients show a general paucity of infil-
trating CD3+, CD4+ and CD8+ T cells [63]. Under
expression of HLA-DM is also proven in autoimmune
processes in Rheumatoid Arthritis [26] and Hodgkin
Lymphoma [63].

Conclusions
The discovery of the Pathway Protection Loops is suggest-
ing a level of transcriptional regulation at the pathway
level not fully investigated before. Studies conducted on
specific miRNAs such as the one published by Barik [64]
confirm the presence of this type of regulatory motif, but a
high-level analysis such as the one proposed in this paper
is still missing.
The understanding of this and other higher-level regu-

latory motifs could, for example, lead to new approaches
in the identification of therapeutic targets because it
could unveil new and “indirect” paths to activate or si-
lence a target pathway.
A lot of work still needs to be done to better uncover

this high-level inter-pathway regulation. miRNA are not
the only small RNAs that are involved in regulatory
mechanisms. For example, ceRNA have been recently
identified as miRNA down-regulators [65]. Unfortu-
nately data available on these new mechanisms is still
very limited and therefore it is not yet possible to in-
clude genome-wide investigations like the one presented
in this paper.

Materials and methods
To study the characteristics and properties of PPLs, we
designed a software pipeline that, combining pathway
data available via PathwayAPI [66] with the Micronome
data extracted from public databanks (e.g., Microrna.org
[67], miRBase [68], etc.), is able to search for miRNA
mediated interactions at the pathway level, thus search-
ing for the existence of PPLs.
The full software pipeline that is available at (http://www.

testgroup.polito.it/index.php/bio-menu-tools/item/185-
pathway-rotection-loops-finder) has been implemented as
a collection of PHP classes, given the need of interfacing
our software with several web based sources of informa-
tion. All collected data have been saved into a unified rela-
tional database used for mining information about PPLs.

Pathway data sources
The search for the existence of the PPL motif starts from
the analysis of a collection of pathways. Several public and
commercial pathway resources currently exist on the web.
However, these biological databases are very diverse, mak-
ing it extremely laborious to carry out even simple queries
across databases [69]. To overcome with this limitation,
pathway related information have been retrieved through
Pathway API [70]. Pathway API is an aggregated database
combining and unifying databases from three major
sources of information: (1) the WikiPathway database [5],
the (2) Ingenuity database [6] and the (3) KEGG [8]. One
of the main advantages of Pathway API is the normal-
ization of the network nodes that are all consistently
translated and named using the corresponding NCBI
Gene ID [70], thus enabling an easy data integration with
the other data sources considered in this work.

Micronome and gene interaction data sources integration
Figure 5 highlights the data sources and computational
steps performed in our pipeline for the identification of

http://www.testgroup.polito.it/index.php/bio-menu-tools/item/185-pathway-rotection-loops-finder
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Figure 5 PPL Identification PIPELINE. Computational pipeline for the identification of pathway protection loops.
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PPLs in a pathway. The pipeline basically consists of two
information retrieval flows. The two flows are applied to
each gene composing the target pathway. The outcomes
of these two flows are then intersected to identify the
presence of PPLs.
Several external data sources are employed in the pro-

posed pipeline, namely:

1. the Entrez E-Utils web API (e-Utils) [71],
2. the miRBase database release 18 (miRBase) [66]
3. the microRNA.org database (microRNA.org) [67,72],
4. the TargetMine database [73],
5. the Transcription Factor encyclopedia (TFe) [74],

and
6. the Sanger Genecode database release 9 (Sanger) [28].

In several cases, these databases use different conven-
tion for identifying specific entities (e.g., genes). When-
ever possible, information from the cited databases have
been dumped into a local unified relational database and
all entries have been then preprocessed to unify the dif-
ferent identifiers. Working with a local dump of the in-
formation also allowed us to speed-up the information
retrieval process which requires a massive access to
these information sources.

Intragenic miRNA identification
To identify miRNAs co-expressed with the pathway
genes we restricted our search to the set of intragenic
miRNA. Intragenic miRNA represent around 50% of the
mammalian miRNAs [75-79]. Most of these intragenic
miRNA are located within introns of protein coding
genes (miRNA host genes) and are referred to as in-
tronic miRNA, whereas the remaining miRNAs are over-
lapping with exons of their host genes and are thus
called exonic miRNA. Moreover the majority of intra-
genic miRNAs are sense strand located while only a very
small portion is anti-sense strand located. Our analysis
considers intronic and exonic miRNAs both sense and
anti-sense strand located.
We assume that intragenic miRNA are in general co-

expressed with their related host-genes as supported by
previous studies [75,80-83]. Recently Chunjiang et al.
[84] also suggested that evolutionary conserved intra-
genic miRNA tend to be co-expressed with their host
genes more likely than poorly conserved ones. This con-
sideration could further refine the outcome of our ana-
lysis, however at the current stage it has not yet been
implemented in our pipeline.
Intragenic miRNAs are retrieved through the miRBase

database. miRBase is a searchable database of published
miRNA sequences and annotations. About 94.5% of the
available mature miRNA sequences considered in this
paper have experimental evidence, thus representing a
reliable source of information. Each miRNA entry in
miRBase is correlated with the related information on
the genetic location that is exploited to identify the host
genes.
To identify intragenic miRNA of a given host gene we

first search for the coordinate of the gene using the e-
Utils. Once obtained the gene coordinates we search for
all miRNAs with coordinates embedded in the ones of
the gene resorting to miRBase.

Intragenic miRNA targets identification
We searched for potential targets of each identified in-
tragenic miRNA resorting to microRNA.org. microRNA.
org searches for miRNA targets applying the miRanda
algorithm [85]. The miRanda algorithm identifies poten-
tial binding sites by looking for high-complementarity
regions on the 3′UTRs. The scoring matrix used by the
algorithm is built so that complementary bases at the 5′
end of the miRNA are rewarded more than those at the
3′ end. The resulting binding sites are then evaluated
thermodynamically, using the Vienna RNA folding pack-
age [86] and each prediction is finally associated with a
down-regulation score named mirSVR score [87]. Newer
miRanda versions [88] implement a strict model for the
binding sites that requires almost-perfect complementar-
ity in the seed region with only a single wobble pairing,
thus increasing the prediction accuracy. Other miRNA
target databases such as TargetScan [89] use different pre-
diction algorithms that aim at filtering many false positives
from the beginning of the prediction process. However,
the availability of the mirSVR score in microRNA.org pro-
vided us an additional degree of freedom to investigate the
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robustness of our prediction when changing the way
microRNA targets are filtered. The second advantage of-
fered by microRNA.org compared to other repositories
such as TargetScan is the possibility of downloading the
full database in a relational form. Given the amount of
queries required by the proposed analysis this was a
mandatory requirement to keep the computation time
into a reasonable range.
To work with reliable predictions and limit the amount

of returned miRNA-gene interactions, during the analysis
we restricted our search to the microRNA.org “Good
mirSVR score, Conserved miRNA” and “Good mirSVR
score, Non-conserved miRNA” with negative mirSVR
score lower than −0.3/-0.6. Given the selected intragenic
miRNA name, searching for the targets simply requires an
SQL query into the microRNA.org database.

Antagonist miRNA identification
Antagonist miRNAs are miRNAs that target one of the
genes of the pathway and similarly to the Intragenic
miRNA targets can be retrieved through microRNA.org.
Given the NCBI GeneID we query the microRNA.org
database to identify the set of miRNAs targeting the
gene. Query to microRNA.org at this step follows the
same filtering rules on the mirSVR score applied for the
identification of the intragenic miRNA targets.

Antagonist miRNA host gene identification
The identification of an antagonist miRNA host gene
follows an inverted flow compared to the one employed
to identify the pathway intragenic miRNAs. For each an-
tagonist miRNA we identify the related coordinates
using miRBase, and, given the coordinates, we search
into Sanger for a gene whose coordinates embrace the
one of the considered miRNA. Genes identified at this
step represent potential PAGs.

Antagonist miRNA host gene TF identification
As already mentioned in the introduction of this paper,
miRNAs have a post-transcriptional regulation role [90].
Intragenic miRNAs that directly target the PAGs would
not actually prevent the production of the related Antag-
onist miRNAs since miRNAs are expressed during tran-
scription whereas the down-regulatory action is post-
transcriptional. However, the expression of miRNAs can
be activated or repressed by transcription factors of the
related host genes, which therefore can serve as up-
stream regulators of miRNA [24]. For each antagonist
miRNA host gene we therefore search for the related
transcription factors. Searching for the transcription fac-
tors of the antagonist miRNA host genes is a critical step
due to the limited availability of information from public
databases that may strongly reduce our ability of identi-
fying PPLs. For this reason we tried to integrate more
than one data source in our search using two databases:
(1) TargetMine and (2) TFe.
Both TargetMine and TFe provide web services to ac-

cess the related database. To speed up the analysis all
information contained in these two repositories have
been downloaded and merged into a single database
table containing relations between TFs and related
target genes.
To download the information contained in Target-

Mine, we retrieved from Sanger the full list of NCBI
GeneIDs considered in our analysis. For each geneID
we then searched for TF targeting the selected gene through
the REST service http://targetmine.nibio.go.jp:8080/
targetmine/service/template/results?name=Gene_TFSource&
constraint1=Gene&op1=LOOKUP&format=xml&&extra1=
H.+sapiens&value1=⟨targetgeneid⟩. The resulting xml for-
matted information has then been processed and integrated in
the database.
A similar approach has been applied to download the

information provided by TFe. The list of all TFs available
in TFe has been downloaded through the REST service
http://www.cisreg.ca/cgi-bin/tfe/api.pl?code=all-tfids. For
each TF in the list, the list of targets has been computed
calling the REST service http://www.cisreg.ca/cgi-bin/tfe/
api.pl?code=entrez-gene-id&tfid=⟨TFID⟩. The resulted in-
formation has ben finally added to the local database and
joined with the ones provided by TargetMine.
With the availability of a local database, searching for

TFs targeting a given host gene simply requires to query
the related database tables.

Additional files

Additional file 1: File containing aggregated data about the number
of loops identified in the considered pathways. Analysis is performed
with mirSVR < −0.3 threshold on the miRNA target identification.

Additional file 2: File containing aggregated data about the number
of loops identified in the considered pathways. Analysis is performed
with mirSVR < −0.6 threshold on the miRNA target identification.

Additional file 3: Cytoscape session file containing the network of
interaction among pathways connected by PPLs. It requires Cytoscape
v.2.8 to be displayed.
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