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Abstract

Background: A comprehensive view on all relevant genomic data is instrumental for understanding the complex
patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an

overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events.

Results: We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream
processed genomics data typically available in cancer research. A powerful search interface and a fast visualization
engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to
easily communicate their results. A comprehensive data administration allows to keep track of the available data sets.
We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may
be inactivated in two different ways, a fact that has not been published before.

Conclusions: The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of

downstream processed data support life scientists in generating hypotheses. The export of high quality images
supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2
demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle.
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Background

The availability of high-throughput technology in
genomics, such as microarrays and more recently Next
Generation Sequencing (NGS), led to many interest-
ing projects in all areas of the life sciences, the most
well-known of which probably are the Encyclopedia of
DNA Elements (ENCODE) project [1], the 1000Genomes
project [2], The Cancer Genome Atlas (TCGA) [3], and
the International Cancer Genome Consortium (ICGC) [4].
These are complemented by thousands of smaller projects
[5]. These projects delivered large sets of data which has
spawn the development of many new and efficient meth-
ods and software tools to analyze the data. However, due
to the exponential decrease in the costs to produce the
data and the fact that computer hardware costs decreased
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less dramatically, the bottleneck in genomics research
shifted from data generation to data analysis.

Most of the methods and tools for analyzing genomics
data focus on the initial steps of the analysis, such as iden-
tifying a set of highly expressed genes in a microarray or
RNA-seq study or predicting mutation events in a popu-
lation, given a set of reads mapped to a reference genome.
Such analysis steps reduce the data to be analyzed fur-
ther by at least two orders of magnitude. However, the
complexity and diversity of the results, here called down-
stream processed data, requires well-thought methods
to integrate the data in a common model, such that all
queries relevant for the specific research questions can
efficiently be answered. Sometimes it suffices to produce
a ranked list of genomic events, e.g. the most differentially
expressed genes or highly consistent mutations supported
by data from a given set of samples. In many cases, for a
given set of samples, one wants to obtain an overview of all
genomic events in a specific genomic location. In this situ-
ation, the integrative visualization of specific downstream
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processed data is usually a necessary and often sufficient
mode of analysis.

The many software solutions for the integrative visual-
ization of genomic data can be divided into three main
categories:

1. generic genome browsers including the Ensembl
genome browser [6], the UCSC genome browser [7],
GBrowse [8] and JBrowse [9].

2. genome browser for short read data (NGS browser)
including Trackster [10] (part of the Galaxy
Visualization Framework [11]), Artemis [12],
GenomeView [13], Savant2 [14], and the Integrative
Genomics Viewer (IGV) [15]. For an in depth review
of generic genome browsers and NGS browsers see
[16,17].

3. special purpose software for the visualization of
downstream processed genomic data, such as the
Gaggle genome browser [18] and myKaryoView [19].

myKaryoView is a web application to visualize personal
genomics data provided via the Distributed Annotation
System (DAS) protocol [20] by services like 23AndMe [21].
The data can be viewed at different resolutions ranging
from whole chromosomes to regions of a few hundred
base pairs. The Gaggle genome browser unifies the visu-
alization of several kinds of data ranging from microarray
probes and short read data to generic features. It employs
the Gaggle framework [22] which provides interfaces to a
rich set of bioinformatics applications.

All these tools are useful for the task they were devel-
oped for. However, in our opinion, they are all lacking
some important functionality for the convenient integra-
tive visualization of downstream processed data, namely
a flexible filter system for the data to be displayed, high
quality image export for explanatory data visualization
and communication as well as a powerful data administra-
tion to cope with the ever increasing amounts of data to
be integrated.

In our previous work [23] we have described the first
version of the FISH Oracle software (FISH Oracle 1, in
the sequel) for the visualization of copy number data,
build on top of a fast visualization engine and Asyn-
chronous JavaScript and XML (AJAX) technology offering
an interactive visualization and convenient export of visu-
alizations in high quality formats. Here, we describe FISH
Oracle 2, a special purpose software tool for the integrative
analysis of cancer genomics data. It stores different kinds
of downstream processed data from multiple samples in
a single database. A powerful search interface allows to
interactively filter the data to be displayed with respect to
different criteria. FISH Oracle 2 is able to simultaneously
display different data sets, thus simplifying their compar-
ison. Filter and display options can be changed on the fly.
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A comprehensive data administration allows to keep track
of the data stored in the database. FISH Oracle 2 provides
significant advances and many new features, compared to
FISH Oracle 1 (see Additional file 1: Table S1 for details).

In two case studies we show how to apply FISH Oracle 2
to different kinds of genomic data from published ICGC
and TCGA projects and exemplify its capability for flex-
ible and effective visual data exploration. For example, in
the data from the TCGA project (see second case study),
the visualization revealed evidence that the gene TTC28
may be inactivated in two different ways in colon and rec-
tal tumor tissue, a finding that has not been published
before.

Methods

For storing data, creating the user interface, handling the
client/server communication, and visualizing the data,
FISH Oracle 2 employs the same well-established soft-
ware tools and libraries already used in its predecessor
FISH Oracle 1. These tools and libraries and their use
have extensively been described in a previous publication
[23]. This section briefly outlines the latest modifications
of and additions to the methods used in FISH Oracle 1.
Additional file 1: Figure S5 shows a summary chart of the
most important components of FISH Oracle 2.

The data visualized in FISH Oracle 2 comes from
two sources, namely the FISH Oracle database and the
Ensembl database. To simplify the description, we use the
term Ensembl as a synonym for the Ensembl database
if not stated otherwise. Annotations are fetched from
Ensembl], either by accessing a remote server (e.g. at the
European Bioinformatics Institute) or a local server stor-
ing a verbatim copy of the original database. For efficiency
reasons, we recommend the latter mode of access.

In FISH Oracle 1 we used the Java Application Program-
ming Interface (Java API) to Ensembl. As this interface is
no longer supported, we had to modify the parts of the
software which access Ensembl. One choice would have
been to employ the fully supported Perl API to Ensembl.
However, this would have added another programming
language in addition to C and Java and would also require
additional effort in interfacing Perl with AnnotationS-
ketch [24] (our visualization library, written in C). To
avoid these complications, we developed our own C API
to Ensembl. As we only use a subset of the data stored in
Ensemb], this turned out to be a reasonable decision. Our
C-API supports multiple versions of Ensembl, providing
access to chromosome bands and high level gene data.

The data specific to FISH Oracle 2 is stored in the
FISH Oracle database, which has been extended to
accommodate different kinds of processed genomic data
originating from NGS and microarray experiments as well
as user related data. The latter kind of data is gener-
ated whenever the user decides to store configurations of
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the search menu or other display configurations to refine
them later or to reproduce a certain view on the data.

The data in the FISH Oracle database can be accessed
either via a C API or via a Java API. To retrieve and visu-
alize data we use the C API, which is built on top of the
GenomeTools software [25], in particular the persistent
graph based storage functionality for genome annotations,
supporting MySQL and SQLite databases. A complete C-
based solution has proven to be much faster and more
robust than a combined C- and Java-based solution as
used in FISH Oracle 1. The Java API to the FISH Oracle
database is solely used for data administration (e.g. data
import) and tabular display of data.

Results

FISH Oracle 2 consists of three main parts: data visualiza-
tion, data administration, and application administration.
These are described in the following three subsections.
We further present two detailed case studies showing
how to use FISH Oracle 2 in the analysis of two publicly
available cancer genome data sets.

Data visualization

FISH Oracle 2 allows users to query the FISH Oracle
database in a variety of ways. It enables an interactive
visual data exploration of large amounts of different kinds
of genomic data in the context of genome annotations
offering a chromosomal resolution ranging from a few
base pairs to whole chromosome view. Several easily con-
figurable filters can be applied to select data with specific
attributes, which are specified in the search menu on the
left side of the main window of FISH Oracle 2 (Figure 1).
The selected data is displayed in the main window using
one of the following four visualization elements, each
of which has an optional caption providing additional
information about the displayed genomic entity.

A segment is a horizontal rectangle of arbitrary length
and fixed height with an associated numerical attribute. A
segment is most appropriate for representing data on copy
number variations (CNVs), i.e. genomic amplifications or
deletions annotated with intensity or status values, which
could be computed by programs such as DNACopy [26]
and PENNCNYV [27], respectively. Segments can also be
used to represent expression values. A segment caption
consists of the sample name the data was derived from.

A SNV-element is a vertical line of fixed height at a
specific position. It is most appropriate for displaying
single nucleotide variations (SNVs). The caption of a SNV-
element shows the identifier of the sample the SNV was
derived from. If a SNV is located within a known gene,
then the corresponding gene name is displayed in the cap-
tion. The number following the gene name indicates how
many SNVs have been found within the boundaries of
this gene.
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A translocation-element is a vertical line of fixed height
at a specific position representing the first of two chromo-
somal positions. A visualization of the genomic area cov-
ering the second position can be obtained by a mouse click
on the translocation-element. A translocation-element
is most appropriate for displaying interchromosomal
translocations with two chromosomal break points. The
caption of a translocation-element contains the two chro-
mosomal positions of the translocation break points sep-
arated by a double arrow. If the break points overlap with
a gene, then the name of the gene is displayed, instead of
the genomic position.

Genomic entities (including processed data or self-
defined entities) not fitting into any of the previous three
categories can be visualized by generic elements, i.e. rect-
angles of fixed height and arbitrary length. A generic
element only requires the specification of genomic coor-
dinates, consisting of a chromosome identifier as well as
a start and end position of the genomic entity, and an
optional name. Examples for the use of generic elements
can be found in Figure 2 and Additional file 1: Figure S1.

At the top of the search menu, the user has several
options to request the visualization of data for a specific
genomic region. This can either be done by specifying
genomic coordinates (chromosome identifier, start and
end position of the region) or a gene name or the iden-
tifier of a chromosome band. In the latter two cases, the
displayed chromosomal region is determined as described
in [23]. The chromosomal region refers to the Ensembl
database chosen in a selection menu. FISH Oracle 2 sup-
ports all Ensembl databases from version 54 (last version
referring to the NCBI36 human genome assembly) up to
the current version, which is version 75, as of March 2014.
A mouse click on the visual elements opens a popup win-
dow or a new tab, displaying additional information like
the exact chromosomal position, associated attributes and
links to external databases including RefSeq Genes [29],
the Single Nucleotide Polymorphism Database (dbSNP)
[30] and the Database of Genomic Variants (DGV) [31].

Different options controlling how segments are dis-
played can be chosen via check boxes. First of all, seg-
ments can be displayed either unordered or grouped by
sample. In the latter case, every line of a track (i.e. a logical
collection of lines) displays segments of the same sam-
ple. This ensures that the data between different samples
within a track is comparable. If the user chooses to not
order the segments, they are positioned in a compact lay-
out, which is often advantageous for a large number of
segments to be displayed. In particular, peaks of mini-
mally common genomic regions of recurring segments are
easier to spot, compared to the mode which groups the
segments by sample. Figure 1 (part 3b) show an example
for grouped and Additional file 1: Figure S2 (track (2) and
(3)) show an example for unordered segments.
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Figure 1 Main window of FISH Oracle 2. Main window of FISH Oracle 2 focusing on the 10923 locus which includes the tumor suppressor gene
PTEN. Part (1) shows the search menu, which, in the displayed case, is used for searching a gene by its name. Part (2) consists of the toolbar showing
different navigation and configuration options. Part (3) consists of the visualization area with the chromosome band below the genomic scale and
four further tracks, one for Ensembl genes (in this case genes corresponding to Ensembl version 75 are displayed, indicated by the caption of the
tab), one for CNVs (deletions in our case), one for SNVs and one for translocations, all displayed in default colors. All CNVs with a segment intensity
value of less than —0.5 are shown. The SNV track displays several genes containing between one and seven SNVs followed by seven translocations
in the next track. Each track shows a different data set (here obtained by microarrays and NGS), but all data refer to prostate cancer tissue samples.
The most frequently occurring copy number changes form a minimal common region including the gene PTEN. Furthermore, PTEN is associated
with seven SNVs in one dataset and three translocations in eleven samples of EO-PCA. The characteristic minimal common region derived from

If many segments are displayed, their captions can clut-
ter the visualization. On the other hand, captions often
contain useful information which supports the interpre-
tation of results. Therefore, the user can choose whether
segment captions should be displayed or not.

To select segments according to their intensity value,
one chooses an intensity threshold value. Negative thresh-
old values define an upper bound and positive threshold
values define a lower bound. Only segments with inten-
sity values smaller than the upper bound or larger then the
lower bound are displayed. To select segments according
to their status, one chooses from a selection of possi-
ble status values using a drop down menu. Only seg-
ments with status from the chosen set of status values are
displayed.

Sometimes one wants to compare data sets which have
been generated by different experimental methods. To
make such data comparable, FISH Oracle 2 allows to spec-
ify different intensity threshold values or status values for
each individual dataset, thus allowing, for example, to dis-
play amplifications and deletions on top of each other in
different tracks. In other cases it may be necessary and

more convenient to choose the same threshold or selec-
tion of status values for all datasets to be displayed. To
simplify this, the user can choose a threshold for intensi-
ties or a selection of status values to be valid for all tracks
(global segment threshold).

The track system of FISH Oracle 2 enables the user to
create an arbitrary number of tracks, each displaying dif-
ferent kinds of data, as chosen by the appropriate data
type choice box for the track. The following data types can
be chosen from: CNV, SNV, translocations and generic
data, each corresponding to a visualization element as
described above. Depending on the chosen data type, the
user can set further options to filter the data with respect
to certain attributes. For each data type there are at least
two options: (1) The data can be filtered by project names,
i.e. a set of projects can be chosen and all data available
for any of these projects will be selected. (2) The data
can be filtered by tissue, i.e. only data for the specified
tissue will be selected. In addition to the generic filters
described here, there are specific filters to select mutation
data with respect to quality, somatic status, confidence
and the SNP tool that was used to predict the mutations.
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Figure 2 Genomic aberrations in EO-PCA at the 21¢22 (ERG) locus. This region focuses on the fusion gene TMPRSS2:ERG [28]. In addition to the
chromosome band (1) and gene annotations (2), five data tracks (dataset “Weischenfeldt” in the demo application) are displayed. Track (3) shows all
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(5), (6) and (7) visualize generic entities, i.e. data specified by genomic coordinates only.
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To easily identify a track, the user specifies a track title to
be displayed in the visualization.

To further customize the visualization, FISH Oracle 2
allows to choose different colors for the tracks. Cus-
tom colors override the default colors for the different
kinds of data. There are two default colors for segments
with intensity values: blue represents segments with
negative values and red depicts segments with positive
values.

A mouse click on the start button visualizes the selected
data in a new tab with a toolbar at the top. Below the tool-
bar a genomic scale appears followed by data displayed in
different tracks. The first two tracks are fixed and show
the identifiers of the chromosome bands of the chosen
chromosome, followed by the gene annotations accord-
ing to the selected Ensembl version. The number of tracks
that follows is unlimited and depends on the choices of the
user, as described above. In particular, each track speci-
fied by attribute selections in the search menu triggers the
visualization of corresponding actual data in a track in the
main window.

The toolbar on top of the visualization enables the user
to navigate over the chromosome or to zoom into or
out of the chromosome. The exact positions of the dis-
played chromosomal region are shown in the toolbar.
The configuration button opens a configuration menu for
the currently displayed visualization. This menu allows
to change the search and visualization settings while the
user is browsing the genome. The select button allows
the user to mark interesting regions within the main win-
dow by a rectangle with red boundaries. A mouse click
on the View button opens a new browser tab show-
ing the currently displayed genomic region within the
Ensembl or UCSC browser. This is useful in cases where,
besides the gene annotation displayed in FISH Oracle 2,
additional genomic features available in Ensembl or in
the UCSC-database are of interest. The FISH Oracle 2
visualization can be exported in different custom size
high quality image formats, namely PDF, scalable vec-
tor graphics (SVG), PostScript and portable network
graphics (PNG).

Due to the many possible choices in the selection menu,
a configuration of FISH Oracle 2 resulting in a spe-
cific visualization can get fairly complex. To simplify the
process of completely reproducing a configuration, it is
possible to save it in the FISH Oracle database and to
later load it into the search or configuration menu when
needed. The saving of configuration options should not
be confused with a bookmark, available in other genome
browsers. While a bookmark allows a user to recover a
specific genomic location on the chromosome with mini-
mal effort, saved search configurations simplify restoring
a specific selection of position independent filter and
visualization options.
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Data administration

The data administration section of FISH Oracle 2 pro-
vides a detailed view of the different kinds of genomic data
stored in the FISH Oracle database. Additionally, it allows
to import and delete data, to assign data to different data
sets and to manage access permissions to data for groups
of users.

The data in FISH Oracle 2 is structured as follows: All
data is associated with a study, identified by a unique study
name. A study may contain data of the four different data
types specified above. It refers to the kind of tissue (com-
ing with optional attributes), the data refers to. A set of
studies defines a project. Studies may be included in dif-
ferent projects. Access to data is defined on the project
level, that is, each project can be accessed by certain user
groups. A registered user can access data belonging to
a project if he/she is included in the corresponding user
group.

The data administration comprises three parts: data
import, project administration and study administration.

For the data import, the files containing the data of
interest are uploaded to the server. For each file, the user
specifies the kind of data as well as the study (existing or
new), the data belongs to. For each new study, the user
specifies a project, a tissue, a platform that was used to
produce the data and a genome assembly to which the data
refers.

The import section of the FISH Oracle 2 offers the user
the choice to either import all data from all uploaded files
at once (batch mode) using given meta information for
all studies or to perform the input interactively, file by
file. In the latter case, the software requests the required
information for each file from the user. Options already
set can be reviewed and changed. With any study, addi-
tional general attributes, e.g. biological or pathological
meta information about the tissue can be associated.

Importing large sets of files via the web interface can
become tedious. Therefore FISH Oracle 2 comes with a
command line tool called Fish-Oracle-importer, to per-
form an automatic batch import. It parses a tab delimited
file specifying, in each line, the paths to the data files to
be uploaded as well as the corresponding meta informa-
tion, as described above. Each data file along with the meta
information defines a complete study, with the filename
serving as study name. In this way, a large number of stud-
ies including their meta information can be automatically
created in FISH Oracle 2.

The project administration provides an overview of all
projects in the FISH Oracle database, including the stud-
ies belonging to a project and the user groups having
access to it. New projects can be created, old ones can be
deleted and studies can be assigned to projects. The per-
mission to access a project can be granted or revoked from
user groups.
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The study administration gives a more detailed view
over the studies imported into FISH Oracle 2 as well as the
data contained in the studies.

Application administration

This part of FISH Oracle 2 allows to administrate meta
information like registered users, user groups and the
identifiers for platforms, tissues and databases. Regis-
tered users can be activated or their password can be
reset. Groups can be created and users can be assigned to
groups.

Case study 1 ICGC: Early onset prostate cancer

The International Cancer Genome Consortium (ICGC) [4]
coordinates a global network of large scale cancer stud-
ies to obtain a comprehensive description of genomic,
transcriptomic, and epigenomic changes in the 50 most
important human tumor types. These include prostate
cancer, the most frequent malignant tumor in males. In
one project, prostate cancers (PCA) developing below the
age of 50 years (early onset PCA, EO-PCA for short),
are analyzed in order to dissect early molecular alter-
ations connected to PCA development. The results of this
study suggest that, on the molecular level, EO-PCA rep-
resents a distinct subset of PCA, characterized by partic-
ularly frequent structural rearrangements (SRs) including
the TMPRSS2:ERG gene fusion [32]. FISH Oracle 2 was
among the tools used for detecting potentially important
tumor relevant regions in EO-PCA.

Here we present FISH Oracle 2 visualizations for pub-
licly available data from the EO-PCA study. The data was
retrieved from the supplemental material of [32].

Figure 2 shows the human chromosome 21q22 locus
including the TMPRSS2 and ERG genes and the alter-
ations detected in eleven EO-PCAs. The FISH Oracle 2
visualization demonstrates that structural rearrange-
ments, such as deletions with breakpoints inside the
TMPRSS2 and ERG genes, are the dominant events in this
region. These interstitial deletions, as shown in track 5
(deletion) result in the TMPRSS2:ERG gene fusion, which
brings the ERG transcription factor under the control of
the constitutively activated TMPRSS2 promoter. While
ERG is usually not expressed in prostate cells, the gene
fusion results in massive overexpression of ERG. Sev-
eral studies have shown that ERG expression in prostate
cells is associated with activation of potential oncogenic
pathways, including WNT and TGF-p signaling [33-35].

Interestingly, some deletion breakpoints are located out-
side of TMPRSS2 and ERG, and other types of struc-
tural rearrangements, including duplications (track 6),
inversions (track 7), and translocations (track 4) are
also frequently present. The impact of such SRs for
prostate cancer biology is currently not understood, but
a reasonable hypothesis is that they develop — like the
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TMPRSS2:ERG gene fusion — as a consequence of highly
active androgen receptor (AR) signaling. It has been
shown that strong AR signaling (a hallmark of EO-PCA)
induces chromatin movements resulting in chromatin
crossover and eventually structural rearrangements in
conjunction with erroneous double strand breakage repair
[36]. In contrast, single nucleotide variants (SNVs, track
3 of Figure 2), indicating possible oncogenic mutations,
are rare in this region. This observation is consistent with
earlier reports suggesting that prostate cancer is charac-
terized by frequent SRs rather than SNVs [37]. As shown
here, FISH Oracle 2 allows for simultaneous visualiza-
tion of all types of such SRs in a single image. Such a
comprehensive view on all relevant data is instrumen-
tal for understanding the complex patterns of molecular
alterations typically found in cancer cells.

Additional file 1: Figure S1 depicts alterations found in
the human chromosome 10923 locus, specifically at the
PTEN tumor suppressor locus. The minimal region of
overlapping deletions (track 5), as visualized by FISH Ora-
cle 2,includes PTEN as well as a few adjacent genes. PTEN
is highlighted as a gene with many deletions in the dif-
ferent tumor samples. This is consistent with previous
findings [38,39]. The translocations (track 4) indicate a
complex rearrangement involving chromosomes 1 and 10,
resulting in a disruptive breakage and loss of the func-
tion of PTEN (compare figure two b in [32]). This finding
was of particular importance as it suggests that intra-
genic breakage may be an alternative mechanism of PTEN
inactivation in prostate cancer.

Figure 3 exemplifies how FISH Oracle 2 facilitates the
identification of genes that are recurrently affected by
genomic alterations of different types. The nuclear recep-
tor corepressor 2 (NCOR2) gene has five alterations in the
11 EO-PCA cases. These include a large deletion accom-
panied by a disruptive translocation in case EO-PCAO06,
resulting in complete inactivation of NCOR2. Given the
functional involvement of NCOR2 in chromatin remodel-
ing and AR-dependent transcription control [40,41], this
finding already qualifies NCOR2 as an interesting candi-
date for further investigations. The presence of mutations
in two additional tumors (track 3) as well as another case
of translocation (track 4), further supports the hypothesis
that the NCOR?2 gene is relevant for prostate cancer biol-
ogy. Note that some alterations (i.e. translocations and the
3'-mutation of NCOR2) seem to be located very closely
together when viewed at a high zoom level. However,
the flexible zooming capabilities of FISH Oracle 2 quickly
reveals that these events are actually not co-localized.

Case study 2 TCGA: Colon and rectal cancer

The Cancer Genome Atlas (TCGA) is a U.S. network
for large-scale cancer studies to reveal relevant molec-
ular genomic changes in human cells, leading to the
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Figure 3 Genomic aberrations in EO-PCA at the 12¢g24 locus. Genomic aberrations in EO-PCA at the 12924 locus. This region focuses on the
androgen-receptor interacting gene NCOR2. In addition to the chromosome band (1) and gene annotations (2), three data tracks (datasets
"TCGA_COAD" and “TCGA _READ" in the demo application) are shown. Track (3) shows all SNVs, two of which target NCOR2. Track (4) shows two
translocations, one of which leads to a gene fusion of PDE4D and NCOR2. Track (5) shows one deletion (generic features) covering NCOR2. The insert
in the red box magnifies a part of the NCOR2 gene, including SNVs and two translocations.

development of different tumors [3]. As of March 2014,
data from 29 different tumor types has been generated and
is available online at the TCGA Data Portal [42].

Here we show FISH Oracle 2 visualizations of some
interesting genomic regions that were found in the latest
study of colon and rectal cancer [43]. The data was sepa-
rated into two distinct data sets, one containing samples
from colon and one from rectal tissue. The SNP data was
retrieved from the supplemental material of [43] and from
the TCGA Data Portal [42].

Additional file 1: Figure S2 shows a chromosomal
overview of CNV data. Two tracks are used to separately
show the CNV data from colon and rectal samples. This
allows to quickly compare the data from the two cancer
types, revealing similarities and differences. For example,
focal deletions of RBFOX1 (16p13 locus) are present in
both cancer types, while WWOX (16q24 locus) deletions
are only visible for colon cancers.

Another interesting finding in this dataset was a min-
imally overlapping region of a deletion at the human
chromosome 5q22 region, highlighting the genomic posi-
tion of the APC tumor suppressor gene (Figure 4).
Note the high prevalence of mutations of APC (in
total there are 196 SNVs in the two datasets) [43].
The APC locus is another example that a simultaneous
visualization of deletion and mutation tracks in FISH
Oracle 2 supports detection of “typical” tumor suppressor
genes following the “second hit” sequence of inactivation
[44].

In colorectal cancer, inactivation of the fragile histidin
triad (FHIT) gene in the human chromosome 3p14 region
does not seem to involve SN'Vs, but frequent deletions, the
majority of which are small. A possible but not yet vali-
dated hypothesis is that this visual pattern represents the
particularly high degree of genomic instability at the FHIT
locus, which is co-localized with the fragile site FRA3B,



Mader et al. Journal of Clinical Bioinformatics 2014, 4:5
http://www.jclinbioinformatics.com/content/4/1/5

Page 9 of 14

112.00M
5 . . . . . I . . . \ \ . 1 g
(1) Chromosome bands
-,
(2)-Ensembl genes
EPB41L4A FLJ11235 RP11-15017 1 APC SRP18 DCPAMCC
p= 0 > = ==
CTC-470E21.1 CBX3P3 REEPS TsS1
] ] - 1
IHMIZ%BS P16 Iliﬂ;ﬂ“ﬂﬂ. 1
'XBPIPI
.ZRSRI
(3).CNVs
(4)-SNVs
EPB4ILIA®) APC (196) . SRP19 (1) kD:G[FE () Tssl
CTC-554D8.1 (162)  MCC (20) )
= P i = &=
REEPS (1)
L
Figure 4 Abundant deletions and mutations in the genomic locus of the gene APC. In addition to the chromosome band (1) and gene
annotations (2), two data tracks (datasets “TCGA_COAD" and "TCGA_READ" in the demo application) are shown. Track (3) shows CNV intensity data
displaying deletions at a threshold of —0.5. CNV segments are grouped by sample. Track (4) shows many SNVs, 196 of which affect the gene APC.

one of the most instable regions of the human genome [45]
(Additional file 1: Figure S3).

Additional file 1: Figure S4 gives an example of the
capability of FISH Oracle 2 to identify target genes of
amplifications. In particular, the displayed human chro-
mosome 11p15 locus with frequent amplifications in sam-
ples from colorectal cancer is shown. INS and TH are
the only genes inside the minimal commonly amplified
region, and INS has been described as the functionally
relevant amplification target gene [43].

Figure 5 indicates the presence of biallelic hits in the
human chromosome 22q12 locus, which includes the gene
TTC28. A comparison of the case IDs reveals that in five
of six cases with a translocation, also a deletion is present,
resulting in complete inactivation of TT'C28. Interestingly,
no mutations of TTC28 were found in this study, further
supporting the hypothesis that a combination of dele-
tion and breakage may be an important — and probably
alternative — mechanism for complete gene inactivation
in neoplasia. This is the first report suggesting a bial-
lelic inactivation of T7TC28 in colon and rectal cancer,
thus complementing recent findings of [43], describing
TTC28 as frequently hit by translocations. The combina-
tion of tracks displaying SNVs and translocations mas-
sively facilitates the identification of areas in the genome
harboring potentially interesting candidate genes. With

the increasing application of the mate pair sequencing
technique, it is likely that a multitude of novel transloca-
tions will be detected, some of which might represent a
common second hit in areas with large deletions.

Discussion

We have developed FISH Oracle 2, a flexible web server
for visualizing different kinds of processed genomic data
in context of genome annotations. FISH Oracle 2 supports
interactive as well as batch import of data. A conve-
nient user interface allows for fine grained selection of the
data to be displayed, and a powerful visualization engine
quickly produces state-of-the-art images. These display
different data types such as CN'Vs, SN'Vs, generic data and
translocations. While the first three data types are shown
in a similar way as in other software tools, FISH Oracle 2
provides a unique visual representation of translocations,
which includes the positions, possibly the affected gene,
and an interactive component to optionally display the
genomic area containing the opposite breakpoint.

All data in FISH Oracle 2, including user defined param-
eter settings for the selection of specific subsets of the
data, are stored in a relational database. This guarantees
data consistency, fast retrieval of the data and repro-
ducibility of results. The organization of the data into
projects and studies (which can belong to one or more
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Figure 5 Genomic aberrations in colon and rectal tumors at the 22q12 locus. This region focuses on the frequently translocated gene TTC28. In
addition to the chromosome band (1) and gene annotations (2), four data tracks (datasets “TCGA_COAD" and “TCGA_READ" in the demo application)
are shown. Track (3) and (4) show CNV intensities in form of deletions (3) and amplifications (4) at a threshold of —0.5 and 0.5 respectively. Track (5)
shows SNVs and track (6) shows translocations. The gene TTC28 is affected by six translocations all of which result in a gene fusion.

projects) and the unified view on the data via a data man-
agement component allows to easily keep track of large
amounts of data of different kinds. The high quality of the
visualization and the flexibility of the software allows life
scientists to quickly derive interesting hypotheses about
candidate cancer genes which are affected by genomic
events such as copy number variations, single nucleotide
variations or structural variations.

In two case studies we have exemplified this process by
applying FISH Oracle 2 to data from the ICGC and the
TCGA project. For example, the visualization of data in
the second case study provides additional clues that the
gene TTC28 may be relevant for colon and rectal can-
cer. Although TTC28 was briefly mentioned in the TCGA
study [43] on colorectal cancer as being frequently hit by
translocations, there was no previous report indicating
biallelic inactivation of this gene by deletions and translo-
cations. However, more evaluation is necessary to vali-
date these hypotheses. Another recent study on colorectal

cancer analyzed 92 samples using whole genome sequenc-
ing (WGS) and reported frequent L1 retrotranspositions
originating from the first intron of TTC28 [46]. These
occur in the same narrow region as the translocations
found in [43]. Thus the authors of [46] suggested that
these genomic events reflect the same phenomenon and
should be interpreted as L1 retrotranspositions, rather
than translocations.

To communicate their findings, users can quickly export
the images generated in FISH Oracle 2 in different high
quality formats. FISH Oracle is flexible regarding the
underlying genome as long as genomic coordinates refer
to the same genome assembly as the gene annotation.

We emphasize that FISH Oracle 2 is tailored for
visualizing processed genomic data sets that have been
derived from raw data such as probe intensity values
from microarray experiments or sets of NGS-reads that
were already mapped to a reference genome. The focus
on processed data leads to an important advantage: the
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processing step typically condenses several data points
and abstracts from often irrelevant details of the data,
so that different sets of processed data of the same kind
become comparable. This fact is exploited by FISH Ora-
cle 2, which provides a framework for simultaneous com-
parison of hundreds of samples. The approach of FISH
Oracle 2 to visualize processed data for many samples is
complementing existing approaches to visualize raw data,
as e.g. implemented in Trackster [10] or Savant2 [14].
However, visualization of raw data for many samples usu-
ally provides too many details cluttering the image, which
in turn becomes too complex to be interpreted. As a con-
sequence, raw data is usually only visualized for one or a
few samples.

FISH Oracle 2 has many features in common with
generic genome browsers. Like these, FISH Oracle 2 visu-
alizes genome annotations and various kinds of genomic
data on a linear scale defined by genomic coordinates. The
main difference is that the generic genome browsers only
display a fixed set of genomic events which have been
retrieved from a database provided by the organization
hosting the genome browser or stored in a file, uploaded
by a user. The selection of specific subsets of the data
has to be done separately, e.g. by tailored filter scripts.
This can become cumbersome, given the many attributes
according to which the data may be selected. In contrast,
FISH Oracle 2 provides a fully integrated search menu to
specify the selection attributes interactively and to save
them for later reuse.

Most of the widely used genome browsers like the UCSC
and the Ensembl browser are provided on a web server
hosted by publicly funded organizations. Uploading cus-
tom data to a server for visualization in the context of
publicly available data may raise problems related to pri-
vacy concerns or server capacity, if the private data sets
are very large. Of course, an alternative is to install the
genome browser software on a private server. As there are
often many software interdependencies and considerable
hardware requirements for installing genome browsers,
this option may not always be feasible for the average
research group.

The described shortcoming of generic genome browsers
and NGS browsers have been noticed previously and
motivated the development of several special purpose
software tools for visualizing processed genomics data. Of
these software tools, myKaryoView [19] and the Gaggle
genome browser [18] are most similar to FISH Oracle 2.
All three software tools have several features in common,
but each one has at least one unique feature (Table 1).

myKaryoView focuses on the integration of personal
genomics data from services like 23AndMe with publicly
available reference data like COSMIC [47] or OMIM [48].
Retrieval of public and personal data can only be done
via the DAS protocol [20]. This property is convenient in
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cases where the data is available on a DAS server. How-
ever, the user always has to set up a DAS server, even for
their own personal data. Selection of data according to rel-
evant attributes is not implemented in myKaryoView, so
that one would have to implement filters applied to the
DAS source to allow for selection of subsets of the data.

Compared to FISH Oracle 2, myKaryoView is less flexi-
ble with respect to the genome assembly the visualization
refers to. If one wants to visualize data for a human
genome assembly other than NCBI36 (which is the default
and has been superseded by the latest assembly GrCh37
in mid 2009), the source code of myKaryoView needs to
be changed. On the technical level, myKaryoView and
FISH Oracle 2 follow different approaches: myKaryoView
transfers the data from the web server to the client and
generates the visualizations locally in the browser. In con-
trast, FISH Oracle 2 generates images on the server and
transfers them to the client for display in the browser.
Depending on the amount of data and the density of
the images, one or the other approach may be advanta-
geous. In practical scenarios, both tools quickly generate
visualizations.

While myKaryoView integrates several publicly avail-
able data sources with one (private) high throughput
genomic data set, FISH Oracle 2 integrates different sets
of (usually private) genomic data sets with a single publicly
available data set (the genome annotation). The Gaggle
genome browser (GGB, for short) follows a different data
integration approach focusing on the integration of the
same data at different stages of processing, from raw data
to processed data derived from it. That is, for exam-
ple, microarray probe intensity values can be visualized
together with segment data derived from them. GGB is
a desktop application which keeps all data locally in an
SQLite database. A unique feature of GGB is the use
of caching algorithms to minimize database access. This
facilitates handling the large sets of raw data which are rel-
evant for the visualization approach of GGB. On the other
hand, a desktop application is less well suited for a dis-
tributed, collaborative research approach. Unfortunately,
GGB only allows for interactive import of the data, sample
by sample, via a graphical user interface, a process which
quickly becomes cumbersome if many samples are to be
imported. The number of tracks is generally unlimited. It
is possible to load several samples into one track of the
GGB visualization, but then the samples are not distin-
guishable any more. While strong copy number changes
can easily be recognized, subtle changes often remain hid-
den, independently of the kinds of elements chosen for
visualization (e.g. segments, lines, dots).

In contrast to FISH Oracle 2, the Gaggle genome
browser can display the data in different modes, for exam-
ple as data points, segments or heatmaps. Nevertheless,
the presentations of several datasets containing hundreds
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Table 1 Features of FISH Oracle 2, myKaryoView and the Gaggle genome browser

Feature

Page number with explanation

FISH Oracle 2 myKaryo-View Gaggle genome browser

Unlimited number of tracks

v v

Support of multiple genomes

v

Data filtering

Saving of search configurations

Relational database backend

High quality image export

Data administration

Tabbed browsing

Grouping of segments

Whole chromosome view

AUl N|lOoO|lw|N| DMl |lO

High resolution view

RN NN NN LN NN

S

DAS support

Links to external generic genome browser 6

<

Detailed feature information 5

<]«
<]y«

Bookmarks to genomic locations

Individual element coloring 6

Display of heatmaps

Integration of R

ENANENEN

FISH Oracle 2 and myKaryoView are web applications while the Gaggle genome browser is a desktop application. A bold checkmark is used for features unique among
the three software tools. The second column shows the page number in which the corresponding FISH Oracle 2 feature is explained.

of samples quickly becomes incomprehensible when dis-
played as a heatmap. A unique feature of GGB is the inte-
gration of data processing, data retrieval from sequence,
interaction and pathway databases and data visualization.
This becomes possible by connecting GGB to the Gaggle
framework, see [18,22] for details.

Altogether FISH Oracle 2 is designed to serve a specific
purpose which is to compare different kinds of genomic
data originating from large amounts of cancer tissue sam-
ples. Employing processed data which abstracts from
many details of raw data allows to handle hundreds or
even thousands of samples which would be impossible
when using raw data. It is not intended that FISH Ora-
cle 2 competes with generic genome browsers. It rather
provides capabilities to map own genomic data directly to
genomic positions of genes, which for cancer research, are
the most important genomic landmarks. Further kinds of
annotations, e.g. regulatory features are intentionally not
considered to avoid visualizations cluttered with too many
details. If further annotation data needs to be shown, a
single mouse click on the Ensembl or UCSC button in
FISH Oracle 2 redirects the user to the corresponding
genome browser displaying the genomic region currently
visualized in FISH Oracle 2.

At a technical level it would be desirable for FISH Ora-
cle 2 to provide more direct user interactions like drag and

drop navigation or track reordering. This would however
require advanced HTML5 web-technologies for the data
visualization process. However, with the current state of
technology, it is questionable, whether an implementation
of a web browser visualization engine, based on such tech-
niques, can efficiently generate displays of comparable
quality and provide the full functionality of FISH Oracle 2.
The challenges are manifold, requiring solutions to effi-
ciently transfer the data to be visualized between server
and client, and the choice of the appropriate HTML5
implementation providing the best compromise between
user convenience and efficiency.

Conclusions

We have developed a web server for the interactive visu-
alization of downstream processed genomic data facil-
itating explorative data analysis. The interactive nature
of FISH Oracle 2 and the possibility to store, select and
visualize large amounts of data supports life scientists
in generating hypotheses from the visualization. The
export of high quality images supports explanatory data
visualization, simplifying the communication of new
biological findings. Altogether, FISH Oracle 2 comple-
ments existing software solutions by several novel fea-
tures extending the current possibilities of genomic data
visualization.
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Availability and requirements

To run FISH Oracle 2 on the client side, a recent web
browser with JavaScript support is required. For running
the web server, a Linux system with at least one gigabyte
of RAM is recommended. Hard disk requirements mainly
depend on the size of the Ensembl database. A recent copy
of the Ensembl Homo sapiens database requires about
13 gigabyte.

A FISH Oracle 2 demo server, documentation and
the software sources are available at http://www.zbh.uni-
hamburg.de/fishoracle. The software is released under the
ICS open source license. We have made some effort to
keep the installation as easy as possible. We also provide a
virtual machine image containing a ready to use instance
of FISH Oracle 2 and all necessary software dependencies.
The demo server already contains a unique collection of
data from several published prostate cancer studies as well
as the data sets used for the two case studies.

Additional file

Additional file 1: Additional tables and figures. The additional file 1
contains further tables and figures with visualizations of data from the ICGC
and the TCGA project.
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