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Abstract

The Stevens classification of levels of measurement involves four types of scale: “Nominal”, “Ordinal”, “Interval” and “Ratio”.
This classification has been used widely in medical fields and has accomplished an important role in composition and
interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group
theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in
the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens
classification is reformulated within an abstract algebra-like scheme; ‘Abelian modulo additive group’ for “Ordinal scale”
accompanied with ‘zero’, ‘Abelian additive group’ for “Interval scale”, and ‘field’ for “Ratio scale”. Furthermore, a vector-like
display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation,
data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-
cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of
this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data
mining/data usage and efficacy is expected.

Keywords: Scales on measurement, Stevens classification, Interpretation, Abstract algebra, Data-mining,
Hierarchical cluster, Clinical medicine
Background
In 1946, S. S. Stevens devised his classification of “levels
of measurement” [1], which subsequently has been used
widely and has accomplished an important role in com-
position and interpretation of scales in medical fields.
The systematics of levels of measurement seems to have
been organized and validated by virtue of this classifica-
tion. Nevertheless, we believe that an abstract algebra-
like interpretation/systematization awaits introduction
because of its logical consistency and unexceptional applic-
ability in describing patterns and processes. We conjecture
that it offers benefits in clinical medicine, especially, with
respect to scales of measurement [2,3].
Thus, in the following, we re-interpret Stevens classifica-

tion, and endeavour to give it meaning in some abstract
algebra-like modelling. There, the most preferred construct
is a vector-like structure of various sets of scores based on
individual scales and operators that permit changes of
score within the set. Additionally, classical datasets that are
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classified in terms of the Stevens scales of measurement
can be mined and combined on a higher abstract structure
level based upon a hierarchical-cluster form. To explore
this possibility, we provide simple examples to help readers
understand this modelling tool.
§1. Application of group/field of abstract algebra to the
various types of scales
Stevens classified the scales of measurement into four
scale types [1]; І) “Nominal scale” that uses only labels or
numbers (e.g., numbering of football players, blood type,
nationality); II) “Ordinal scale” that introduces equality,
rank-ordering (e.g., hardness of minerals, grading for effi-
cacy of clinical treatment); III) “Interval scale” that is
based on equally quantitative intervals (e.g., temperature
as read in centigrade, duration, frequency); and ІV) “Ratio
scale” that assumes a ‘zero’ as an origin, equality, rank-
order, equality of intervals, and equality of ratios (e.g.,
absolute temperature, speed of vehicles, and most physical
values) that then admit manipulations using the four
arithmetic operations.
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For І), the “Nominal scale”, there seems to be little
room where group theoretical operations apply because
within that scale only a labelling scheme is permissible.
Although some non-cyclic group might be definable, it
seems that little meaning can be attached to operations
for this sort of scale.
For II), the “Ordinal scale”, a ranking is realised by

introducing a set with an N-graded scoring like ‘1, 2,
3,…, N – 1, N’ (N: positive integer) for a score defi-
cient in (or with no absolute need for) a quantitative
character, but not requiring a ‘0’ score according to
the Stevens classification. Historically, the “graphic
rating scale”, a grading from І to V, was proposed by
Hayes and Patterson in 1921 [4], and Freyd in 1923
[5]. However, here, we envisage either operations that
decrease the score by ‘1’ in an N-graded graphic scale
necessitating a ‘0’, so that {0, 1, 2, 3,…, N – 2, N – 1}
establishes the scoring scale, or simply adding the
score ‘0’ as in {0, 1, 2, 3,…, N – 2, N – 1, N}. We focus
on the former type. Then, for an arbitrary non-
negative integer X, the operation giving the remainder
of X after division by N, written X (mod N), defines
the cyclic group ZN = {0, 1, 2, 3,…, N – 2, N – 1},
where modulo N addition is postulated. With this as-
sumption, given two elements ‘Xj’ and ‘Xk’ (Xj, Xk ∈ ZN)
corresponding for example to the severity of a clinical
symptom and/or finding, then composition (denoted
by ‘*’) is taken to be modulo N addition; ‘Xj*X(j→k) =
Xk’ (with X(j→k) ∈ ZN). Here ‘X(j→k)’ is an operator that
produces the change in score, ‘Xj→ Xk’ (formally we
have ‘X(j→k) = Xj

−1*Xk = Xk – Xj’). Then, all scores ‘Xj’s
and operators ‘X(j→k)’ are composable within a single
Abelian modulo additive group ‘ZN’, where ‘Xj*Xk =
Xk*Xj’ holds, at least, in terms of operation ‘*’. Thus a
patient’s state corresponding to a certain illness or disease
can be changed through the application of a single oper-
ation determined by the two elements belonging to ‘ZN’
[6,7] representing the previous and current state of the pa-
tient. A simple example is presented in Appendix A.
If a state of maximum severity is present, then the

antithesis for any given disease Y is the ideal healthy
state EY = [0|0|0|0|0|…], the combination of all scores
being ‘0’ and represented by the identity element for
group Y = {ZN

×n, *}. Here, Y is the n-fold Cartesian
product of ‘ZN’ (n: the number of components) that
comprises all possible assessments related to each state
of a given disease, for instance, ‘hypertension’, ‘hypergly-
caemia’, ‘diabetes mellitus’, ‘acute pancreatitis’, ‘systemic
lupus erythematosus’, and ‘cerebral artery stroke’. If in
addition composition is given by modulo ‘N’ arithmetic,
prime numbers (e.g., N = 7) are preferable [8,9] and
considerable parts of components could be overlapping
among individual diseases as was mentioned in our
previous reports [6,7]. Note that, in practice, equal
increments within a grading scheme are not always
postulated. Nevertheless, the scale represented by this
Abelian modulo additive group ‘ZN

×n’ will be called a
“modular scale”. However, it may be an atypical case
(partially weakened example) of a “Ratio scale” (type ІV)
without the strict requirement for equal calibration. In-
deed, there are such scales because, like the ‘TNM clas-
sification (with a ‘T0’ entry) for malignant tumours’
[7,10], grades for scoring are determined for example
according to histological characteristics, selection of
treatment, and prognosis, having no strict linearity in
scale, but which might be regarded as an “modular
scale”. Based upon these results, for instance, the fol-
lowing are considered composable; Abelian modulo
additive group Y1 = {Z7, *} for ‘hypertension’, Y2 = {Z7, *}
for ‘hyperglycaemia’, Y3 = {Z7, *} for ‘diabetes mellitus’,
Y4 for ‘acute pancreatitis’, Y5 for ‘systemic lupus erythe-
matosus’, Y6 for ‘cerebral artery stroke’, Yall = {Z7 × Z7 ×
Z7 ×…, *} = {Z7

×n, *} (n: the number of components) for
an entire body, and Y7 = {Z8 × Z4 × Z2 × Z2, *} for the
‘TNM classification (with a ‘T0’ entry) for malignant tu-
mours’ [7,10]. Additionally, these are treatable without ex-
ception within the abstract algebraic theory. For this case,
an equal calibration for severity may have unbeneficial
outcomes if used in clinical treatments. However, for ‘de-
lirium’, ‘chronic liver dysfunction’, ‘acute pancreatitis’, and
‘diabetes mellitus’, for example, total scores based on equal
calibration are desirable to assess disease severity.
For III), the “Interval scale”, differences in quantities

are allowed. An example is ‘periods of time’ or ‘duration’,
which, although can be measured with ratio scales, en-
ables one period to be double another when compared.
The same is true of ‘temperature’. If parameters ‘Xj’ and
‘Xl’ ∈ R (the continuous real number line) have ranges

−∞ < X < þ∞ ðiÞ

we can consider an operator ‘Xk’ that causes changes
from ‘Xj’ to ‘Xl’, and introduce a binary operation, de-
noted ‘◦’, where ordinal addition and its inverse, subtrac-
tion, are assumed;

Xj∘Xk ¼ Xj þ Xk ¼ Xl j; k; l; session numbersð Þ ðiiÞ

In this regard, as for ‘Xj’, it can also be expressed as a
sum of an integer part and a decimal part,

Xj ¼ 1mj þ cj ðiiiÞ

(mj = [Xj], cj = Xj − [Xj], ‘0 ≤ cj < 1’; ‘[X]’ is the floor func-
tion meaning the highest integer below ‘X’). Similarly,

Xk ¼ 1mk þ ck mk ¼ Xk½ �; ck ¼ Xk− Xk½ �; ‘0 ≤ ck < 1’ð Þ ðivÞ
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Xl ¼ 1ml þ cl ml ¼ Xl½ �; cl ¼ Xl− Xl½ �; ‘0 ≤ cl < 1’ð Þ ðvÞ

‘1’ is a ‘unit length’ of the respective values. Thus, (iii) −
(v) can be redefined using the unit length ‘1’ as an interval
scale,

Xj∘Xk ¼ 1mj þ cj
� �þ 1mk þ ckð Þ

¼ 1 mj þmk
� �þ cj þ ck

� � ¼ 1ml þ cl
¼ Xl ðviÞ

There exists an identity element ‘X0’ (=0) that satisfies
‘Xj ◦X0 = X0 ◦Xj (=Xj + X0 = Xj + 0) = Xj’. Additionally, the
inverse element is ‘Xj

−1 = −Xj’ satisfying ‘Xj
−1◦Xj = Xj ◦Xj

−1 =
Xj + Xj

−1 = Xj −Xj = X0 (=0)’.
Naturally, commutativity and associativity are satisfied.

Let U be the set that comprises all ‘Xj’s, i.e., U ≡ {Xj | Xj

∈ R}. Because ‘Xj , Xk, Xj ∈ set U, the closure law holds.
Therefore, this operation defines a group U = {Xj, ◦}
[2,3]. “Body temperature readings”, “clock time for the
onset of sleep within a day” and “clock time for the onset
of drip infusion within a day” are definable in this scale.
Examples of the first two are provided in Appendix B. By
making use of this procedure, the differences between
quantitative values and operators are eliminated, and
both can be regarded as elements belonging to a single
group U. Moreover, a collection of additive Abelian
groups U1 ≡ {X1j | X1j ∈ R (deg C)} based on an individ-
ual’s clinical values can be described as, as for example
U1 = {X1j, ◦} for “body temperature readings”, and U2 ≡
{X2j | X2j ∈ R (/24 hrs)} and U2j = {X2j, ◦} for “clock time
for the onset of sleep within a day”, U3 ≡ {X3j | X3j ∈ R
(/24 hrs)} and U3j = {X3j, ◦} for “clock time for the on-
set of drip infusion within a day”,…, UN = {XNj, ◦},…,
(N: natural number). Those are considered readily
treatable and recordable within an abstract algebraic
context.
For IV), the “Ratio scale”, the ‘administration of medi-

cine (with strict dosage regimes)’ and ‘International Stat-
istical Classification and Health Related Problems’ [11]
were given as examples in our previous report [6,7]. Es-
sentially, for this scale, because the four arithmetic oper-
ations are possible, ‘rings’ and ‘fields’ in abstract algebra
are applicable so long as composition is given by modulo
‘N’ arithmetic with ‘N’ a prime. Although there could be
scope where the four modulo arithmetic operations
(denoted by ‘†’ in ‘Xj†Xk = Xl’) are applicable in assess-
ment scoring in clinical medicine, it might be preferable
at this stage to confine the application of ratio scales to
just modulo N addition ‘*’ collectively for ‘†’, similar in
manner as established in Appendix A. For the example
given in Appendix A, the difference in interpretation is
the presence/absence of an equal calibration.
Whereas the scale of ‘TNM classification for malig-
nant tumours’ [10] was regarded as an example of an
“Ordinal scale”, some of the scales defined as “Ratio
scales” at initial glance should be regarded as “Ordinal
scales” accompanied with ‘0’. It might be contentious
whether clinical assessments performed using superficial
scales based on the four arithmetic operations could
have sufficient validity in clinical treatments or clinical
research.
Nevertheless, other clinical scales range over a semi-

open continuous interval like ‘0 ≤X < +∞’ (X: real num-
ber), such as ‘blood concentration of white blood cells:
[WBC] (/mm3)’, and ‘administration of a certain drug
like lithium carbonate: [Li+] (mEq/l), sodium: [Na+]
(mEq/l), calcium: [Ca++] (mg/dl), chloride: [Cl−] (mEq/l)
and bicarbonate: [HCO3

−] (mEq/l)’. Also, there are clin-
ical scales whose ranges are the open interval like ‘−∞ <
X<+∞’ (X: real number); ‘Anion gap [AG] = [Na+]− ([Cl−] +
[HCO3

−]) (reference range for blood tests: 12 ± 2 mEq/l)’
and ‘Base excess [BE] (reference range for blood tests:
0 ± 2 mmol/l)’. However, both can be treated using the
notion of ‘field’ because those values are real numbers
where all four arithmetic operations are included, with
the exception of division by zero. Thus, the above clin-
ical values could be definable over a ‘field’. In this re-
gard, we assume a rule that each unit like ‘mEq/l’
accompanies the value automatically with the results of
operations regardless of types of operation among the
four arithmetic operations (Note that there are cases
when units vanish as when ratios are taken ‘mEq/mEq
(unitless)’ or displayed in reciprocal form like ‘l/mEq’).
Examples for ‘[WBC] (/mm3)’, ‘[Na+] (mEq/l)’ are pre-
sented in Appendix C.
In this case, we consider a set V and assume that ‘#’

means one of ‘addition, subtraction, multiplication, and
division’ collectively; thus, ‘Xj # Xk = Xl (∈V), where or-
dinal arithmetic calculations are performed excluding of
course division by zero.
For set V, addition is commutative: Xj + Xk = Xk + Xj,

and associative: (Xj + Xk) + Xl = Xj + (Xk + Xl). As for
multiplication, set V meets the conditions of a ‘monoid’
[2,3]. Associativity: (Xj × Xk) × Xl = Xj × (Xk × Xl), with
Left and Right Distributivity: Xj × (Xk + Xl) = Xj × Xk +
Xj × Xl, (Xj + Xk) × Xl = Xj × Xl + Xk × Xl. A nonzero Iden-
tity X0 (=1) for multiplication exists. The Inverse ‘Xj

−1 =
1/Xj’ satisfies ‘Xj × Xj

−1 = Xj
−1 × Xj = X0 (=1)’. For division,

‘Xj/Xk = Xj × Xk
−1 = 1’ is definable except for division by

zero. Therefore, we can confirm that set V is a ‘field’. It
can be expressed as V = {Xj, #} or V = {Xj | Xj ∈ R}.
Furthermore, different fields based on different sets of

clinical values can be described as follows: field V1 ≡ {X1j

| X1j ∈ R (/mm3)} and V1 = {X1j, #} for “blood concentra-
tion of white blood cells: [WBC] (/mm3)”, field V2 ≡ {X2j

| X2j ∈ R (mEq/l)} and V2 = {X2j, #} for “administration
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of a certain drug like lithium carbonate: [Li+] (mEq/l)”,
field V3 ≡ {X3j | X3j ∈ R (mEq/l)} and V3 = {X3j, #} for “so-
dium: [Na+] (mEq/l)”, field V4 ≡ {X4j, #} for calcium: [Ca++]
(mg/dl), field V5 for chloride: [Cl−] (mEq/l), field V6 for
‘Anion gap [AG] (mEq/l)’, field V7 for ‘Base excess [BE]
(mmol/l)’,…, VN,…, (N: natural number). For each, an
independent abstract algebraic treatment is possible as for
ordinal abstract algebra.

§2. A vector-like notation using group/field operations
belonging to a single set
By making use of all types of scales of measurement,
we propose a vector-like expression of a patient’s state
(denoted ‘Rj’, j = 1, 2, 3,…: number of sessions), where
the mixed expression and its totality of operations that
could be performed belong to a single set R. Because of
the possible variety of operation rules, the genuine use
of this set may be unwieldy at this stage.
Partially based upon our previous description [6,7], let

us define ‘Rj’ to be a vector of five clinical values,
Rj = [severity for depression (within modulo 7 arith-

metic) | clock time for the onset of sleep (/24 hrs) |
blood concentration of white blood cell [WBC] (/mm3) |
blood concentration of [Na+] (mEq/l)| a certain value (a
certain operational unit)],

¼ ½X jð Þ1 mod 7ð Þ X jð Þ2 =24 hrsð Þ�� �� X jð Þ3 =mm3
� �

j X jð Þ4 mEq=lð ÞjX jð Þ5 …ð Þ�
ðviiÞ

Next, suppose the patient’s state ‘Rj’ changes to ‘Rj+1’
effected by operator ‘R(j→j+1)’; we denote by ‘◊’ the binary
composition composed of the product of compositions
for each component. Three possible states are:

R1 ¼ ½ X 1ð Þ1 ¼
� �

2 mod 7ð Þ X 1ð Þ2 ¼
� �

21 =24 hrsð Þ�� �� X 1ð Þ3 ¼
� �

5000

=mm3
� �j X 1ð Þ4 ¼

� �
145 mEq=lð ÞjX 1ð Þ5 …ð Þ�

R2 ¼ ½ X 2ð Þ1 ¼
� �

5 mod 7ð Þ X 2ð Þ2 ¼
� �

19:5 =24 hrsð Þ�
�

�
� X 2ð Þ3 ¼
� �

18000

=mm3
� �j X 2ð Þ4 ¼

� �
128 mEq=lð ÞjX 2ð Þ5 …ð Þ�;

R3 ¼ ½ X 3ð Þ1 ¼
� �

3 mod 7ð Þ X 3ð Þ2 ¼
� �

22 =24 hrsð Þ�� �� X 3ð Þ3 ¼
� �

7000

=mm3
� �j X 3ð Þ4 ¼

� �
158 mEq=lð ÞjX 3ð Þ5 …ð Þ�:

For the 1st component, ‘X(1)1’,‘X(2)1’, and ‘X(3)1’, modulo
7 arithmetic (addition) is used. For the 2nd compo-
nents, ‘X(1)2, X(2)2, X(3)2’, operations of Abelian addition
are used. For the 3rd component, ‘X(1)3, X(2)3, X(3)3’, 4th
‘X(1)4, X(2)4, X(3)4’, the four arithmetic operators (those
operations denoted by ‘#’) are required, and for the 5th,
‘X(1)5, X(2)5, X(3)5’, a certain operational unit is postulated.
In the following examples, only addition/subtraction is
presented; naturally, multiplication/division is also consid-
ered permissible.
With related operators R(1→ 2) = [X(1→2)1(mod 7) | X(1→ 2)2

(/24 hrs)| X(1→ 2)3(/mm3)| X(1→ 2)4(mEq/l)|X(1→ 2)5(…)],
and R(2→ 3) = [X(2→ 3)1(mod 7) | X(2→ 3)2(/24 hrs)| X(2→ 3)3

(/mm3)| X(2→ 3)4(mEq/l)|X(2→ 3)5(…)]
Then, using results in Appendix D, ‘R(1→2)’ and ‘R(2→3)’

from the three states given above are as follows:

R 1→2ð Þ ¼ 3 mod 7ð Þ −1:5 =24 hrsð Þj j13000 =mm3
� �� ��

−17 mEq=lð ÞjX 1→2ð Þ5 …ð Þ�

R 2→3ð Þ ¼ 5 mod 7ð Þ 2:5 =24 hrsð Þj j−11000 =mm3
� �� ��

30 mEq=lð ÞjX 2→3ð Þ5 …ð Þ�

Thus, we confirm the relation

R1◊R 1→2ð Þ◊R 2→3ð Þ ¼ R3 ðviiiÞ

Details are illustrated in Appendix E.
Note that, in general, there exists an identity ‘E (=R0) = [0

(mod 7)| 0 (/24 hrs)| 0 (/mm3)| 0 (mEq/l) | X0 (…)]’ such
that ‘Rj◊E = E◊Rj = Rj’. Additionally, there exists an inverse
for any ‘Rj’, ‘Rj

− 1 = [X(j)1
− 1(mod 7) | X(j)2

− 1(/24 hrs)| X(j)3
− 1

(/mm3)| X(j)4
− 1(mEq/l)|X(j)5

− 1(…)] = [7–X(j)1(mod 7) | 24 −X(j)2

(/24 hrs)| − X(j)3(/mm3)| − X(j)4(mEq/l)|X(j)5
− 1 (…)]’ that

satisfies ‘Rj
−1◊Rj = Rj◊Rj

−1 = E’. However, commutativity,
‘Rj◊Rk = Rk◊Rj’ and associativity, ‘(Rj◊Rk)◊Rl = Rj◊(Rk◊Rl)’
are not satisfied. Here, we assume that operators acting on
‘Rj’s should be performed from left to right, that is, from
R1 to Rm (m; number of session for assessment). They
should not be applied between ‘Rj’s. For any assortment of
‘Rj’s with scales of measurement among types I)–IV), a
single set R = {Rj| X(j)1 × X(j)2 × X(j)3 × X(j)4 × X(j)5} (‘×’
means products among groups and fields) using a
vector-like notation for the scoring of patient states can
be structured where all possible assessments and/or
clinical findings of the patient and treatment are in-
cluded. The general form is the n-fold product; set R = {Rj|
X(j)1 × X(j)2 × X(j)3 × X(j)4 ×…×X(j)(n-2) × X(j)(n-1) × X(j)n} (n; the
number of components).
As for the possible application to better data mining

or data usage from the viewpoint of our reinterpretation,
we provide a simple example that may help readers to
follow an outline of the argument. Consider an example
of 17 states “R1, R2, …, R17” (∈set R) each with four com-
ponent (‘n = 5’) and arrows (only symbols) that indicate
the possible changes among the ‘Rj’s, as displayed in
Figure 1. The scheme covers the notation of our model,
and also that of existing methods where (possible) re-
sults of data, ‘Rj’s, are not combined directly with each
other in the sense of operations. Then, the arrows could
be re-displayed according to our concepts as operators
‘R(j→k) that can be regarded as elements ‘Rj’ belonging
to a set R as in Figure 2. In ordinal data sets, the ‘Rj’s are
merely a collection of values and the arrows in Figure 1



R1 R2 R3 R4 R5

R10 R11

R13

R7

R17

R14

R6

R8 R9

R15 R16

R12

Figure 1 Example of a tree composed of a data set and ordinal
arrows. The tree represents changes of states between 17 ‘Rj’s data
elements. In ordinal existing methods, data are only a collection of
results that are not directly combined; manipulations of parts of the
data are defined separately. The arrows merely indicate a change from
one state ‘Rj’ to another ‘Rk’ and have no specific operational sense.

R1

R10 11R2 10

R10 13

R11 12

R1 2 R2 3 R3 4

R2 7 R7 8 R8 9

R4 5 R5 6

R13 17

R13 14 R14 15 R15 16

R12 4

(= R6)

(= R9)

(= R12)

(= R16)

(= R17)

Figure 3 “Operational tree”—the compositional scheme using
symbol ‘◊’. The tree of Figure 2 is re-illustrated using composition
symbol ‘◊’, where the operators are assumed to belong to the single
set R. By admitting algebraic correspondences, this compositional
scheme could potentially provide better data mining/data usage.
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are only marks. However, in our interpretation, all ‘Rj’s
and ‘R(j→k)’s are elements of a single set R subject to ax-
ioms of an abstract algebra as indicated using composition
symbol ‘◊’ in Figure 3. There, the changes ‘from Rj to
Rk’ can be traced at each session. Displayed in this way,
Figure 3 represents an “operational tree” that could offer
potential for better data mining/data usage through a
more generalized/concise treatment (e.g., withdrawing/re-
cording correspond to schemes in Figure 3) that might be
permissible. Practical improvements for efficacy, however,
will need future investigations.
R1 R2 R3 R4 R5

R10 R11

R13

R7

R17

R14

R6

R8 R9

R15 R16

R1 2 R2 3

R3 4 R4 5 R5 6

R2 7

R12 4

R10 11

R13 14

R7 8 R8 9

R14 15 R15 16

R2 10

R10 13

R13 17

R12

R11 12

Figure 2 Scheme of the tree with arrows labelled by operators.
Arrows are interpreted as operators ‘R(j→k)’s that could be regarded
as ordinal elements ‘Rj’s belonging to a single set R. Each operator
that changes ‘Rj to Rk’ can be traced and its degree for each session
identified from initial and final states. The final states (R6, R9, R16 and
R17) can be traced back to any initiating state ‘R1’ by performing an
appropriate sequence of ‘R(j→k)’s.
Here, consider the scenario of Figure 1 where from an
initial value ‘R1’ there are four outcomes ‘R6’, ‘R9’, ‘R16’,
and ‘R17’ containing nodes at ‘R2’ ‘R4’ ‘R10’ ‘R12’ and ‘R13’.
By making use of our previous examples ‘R1 − R3’, the
next simplest examples with ‘n (component number) = 5’
can be confirmed easily:

R10 ¼ ½0 mod 7ð Þ 17 =24 hrsð Þj j9000 =mm3
� �

j130 mEq=lð ÞjX 10ð Þ5 …ð Þ�

R11 ¼ ½6 mod 7ð Þ 20 =24 hrsð Þj j20000 =mm3
� �

j149 mEq=lð ÞjX 11ð Þ5 …ð Þ�

R12 ¼ ½4 mod 7ð Þ 23 =24 hrsð Þj j6000 =mm3
� �

j140 mEq=lð ÞjX 12ð Þ5 …ð Þ�

R13 ¼ ½1 mod 7ð Þ 18 =24 hrsð Þj j5000 =mm3
� �

j135 mEq=lð ÞjX 13ð Þ5 …ð Þ�

R17 ¼ ½2 mod 7ð Þ 23:5 =24 hrsð Þj j3000 =mm3
� �

j150 mEq=lð ÞjX 17ð Þ5 …ð Þ�
Following these results, the next relations, according

to the tree in Figure 3, can be obtained for instance:

R1◊R 1→2ð Þ◊R 2→10ð Þ◊R 10→11ð Þ◊R 11→12ð Þ ¼ R12

R1◊R 1→2ð Þ◊R 2→10ð Þ◊R 10→13ð Þ◊R 13→17ð Þ ¼ R17

The operator expressions are evaluated in Appendix F.
Similarly, the next sequences are definable in principle,

R1◊R 1→2ð Þ◊R 2→3ð Þ◊R 3→4ð Þ◊R 4→5ð Þ◊R 5→6ð Þ ¼ R6

R1◊R 1→7ð Þ◊R 7→8ð Þ◊R 8→9ð Þ ¼ R9
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R12◊R 12→4ð Þ ¼ R4

R1◊R 1→2ð Þ◊R 2→10ð Þ◊R 10→13ð Þ◊R 13→14ð Þ◊R 14→15ð Þ◊R 15→16ð Þ ¼ R16

In general, we denote a node divergence ‘Ra to Rb

(=Ra◊R(a→b) = Rb)’ and ‘Ra to Rc (=Ra◊R(a→c) = Rc)’ as ‘Ra

[(◊R(a→b))(◊R(a→c))]’ (a,b,c: non-negative integers); here ‘( )
( )( )…’ meaning simple juxtaposition. All paths belonging
to the operational tree of Figure 3 can then be described/
recorded, for instance, as the sequence

R1◊R 1→2ð Þ
�
◊R 2→3ð Þ◊R 3→4ð Þ◊R 4→5ð Þ◊R 5→6ð Þ
� �ð◊R 2→7ð Þ◊R 7→8ð Þ

◊R 8→9ð ÞÞð◊R 2→10ð Þ
�
◊R 10→11ð Þ◊R 11→12ð Þ◊R 12→4ð Þ
� �

◊R 10→13ð Þ ◊R 13→14ð Þ◊R 14→15ð Þ◊R 15→16ð Þ
� �

◊R 13→17ð Þ
� ��� �� �Þ�

ðixÞ

To display for easy recognition, for example, end states
like ‘R6, R9, R16, and R17’ and divergence point ‘R4’ a no-
tation ‘(=R6), (=R9), (=R16) and (=R17)’ might be consid-
ered. Hence,

R1◊R 1→2ð Þ
�
◊R 2→3ð Þ◊R 3→4ð Þ◊R 4→5ð Þ◊R 5→6ð Þ ¼ R6ð Þ� �ð◊R 2→7ð Þ

◊R 7→8ð Þ◊R 8→9ð Þ ¼ R9ð ÞÞð◊R 2→10ð Þ
�ð◊R 10→11ð Þ◊R 11→12ð Þ

◊R 12→4ð Þ ¼ R4ð ÞÞð◊R 10→13ð Þ½ð◊R 13→14ð Þ◊R 14→15ð Þ

◊R 15→16ð Þ ¼ R16ð ÞÞ ◊Rð13→17Þ ¼ R17ð Þ� ��Þ�Þ�

ðxÞ

Moreover, composition with an operator as in operating
on ‘R(3→ 4)[(◊R(4→ 5) ◊R(5→ 6))(◊R(4→ 8) ◊R(8→ 9) ◊R(9→ 10))
(◊R(4→ 15) ◊ R(15→ 16))…] from the left-hand side by
‘R3’. The subsequent result can be expressed in accord-
ance with the single scheme presented in Figure 3,
Rj = [X(j)1 (mod 7)|X(j)2 (/24hrs)|X(j)3

1Rj
1 = [X(j)1 (mod 7)|X(j)2 (/24hrs)], 2R

11Rj
2 = [X(j)1 (mod 7)], 12Rj

2 = [X(j)2 (/24hrs)], 21Rj
2

Figure 4 Systematization of “hierarchical clusters”. A hierarchical cluste
the set to single units. The top level is the entire dataset and that is always
R3◊R 3→4ð Þ½ ◊R 4→5ð Þ◊R 5→6ð Þ
� �

◊R 4→8ð Þ◊R 8→9ð Þ◊R 9→10ð Þ
� �

◊R 4→15ð Þ◊R 15→16ð Þ
� �

…� ¼ R6;R10;R16;…

ðxiÞ

Note that the above descriptions (ix)–(xi) express one-
to-many functionality. However, we think that these
formulae are the algebra equivalent to the single oper-
ational tree as exemplified by Figure 3. These play the
algebraic role in composite record-keeping in applied
fields such as medicine. In this formalism, any possible
result ‘Rj’ (∈set R) is obtained and traceable from any
state ‘Rk’ under operations involving a plurality of ele-
ments belonging to a single set R.
Additionally, we can include data mining in a more

symbolic/abstract way as follows. For an arbitrary j (j =
1, 2, 3,…, m), a hierarchical-cluster-like expression can
be defined [12]. For instance, if a partition of Rj is a set
of subsets H = {1Rj, 2Rj, 3Rj,…, rRj} such that (1) Rj ∈ H;
(2) for all single sets sRj in Rj, sRj ∈ H; and (3) ‘sRj ∩ tRj ∈
{ϕ, sRj, tRj}’ for all s ≠ t = 1, 2,…, r. That is, condition (3)
means that either any two clusters ‘sRj and tRj’ are dis-
joint, or one cluster is contained entirely inside the
other, and every individual Rj is contained in at least one
cluster larger than itself. Note that if ‘sRj ∩ tRj = ϕ’ for all
s ≠ t, then the hierarchy becomes a partitioning. Hence-
forth, reference to a hierarchy implies that ‘sRj ∩ tRj = ϕ’
for at least one set of (s, t) values. In the previous ex-
ample (vii), ‘Rj’ could be expressed in hierarchical-cluster
notation where there are eight clusters (and relabeling
within clusters) as shown in Figure 4. If Rj comprises
‘1Rj

1 and 2Rj
1’, the first level of hierarchy, ‘Rj = 1Rj

1 ∪ 2Rj
1’

holds. At the second level, ‘1Rj
1 = 11Rj

2 ∪ 12Rj
2’ = [X(j)1

(mod 7) | X(j)2 (/24 hrs)], ‘2Rj
1 = 21Rj

2 ∪ 22Rj
2’ = [X(j)3

(/mm3) | X(j)4 (mEq/l)|X(j)5 (…)], whereas at the third
level, ‘22Rj

2 = 221Rj
3 ∪ 222Rj

3’ = [X(j)4 (mEq/l)|X(j)5 (…)], 221Rj
3

= [X(j)4 (mEq/l)], 222Rj
3 = [X(j)5 (…)] (Figure 4). Hence we
(/mm3)|X(j)4 (mEq/l)|X(j)5 (…)]

j
1 = [X(j)3 (/mm3)|X(j)4 (mEq/l)|X(j)5 (…)]

= [X(j)3 (/mm3)], 22Rj
2 = [X(j)4 (mEq/l)|X(j)5 (…)]

221Rj
3 = [X(j)4 (mEq/l)], 222Rj

3 = [X(j)5 (…)]

r is defined as the necessary class of subsets needed to decompose
decomposable into base units.
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obtain the complete set Rj = {X(j)1, X(j)2, X(j)3, X(j)4, X(j)5} =
[X(j)1 (mod 7) | X(j)2 (/24 hrs) | X(j)3 (/mm3) | X(j)4 (mEq/l)
| X(j)5 (…)]. A hierarchy has additional levels as necessary
to reach single units at its base [12]. The top level is the
entire dataset ‘Rj’ and that is always composable using
base units. That is, arbitrary ‘Rk’ and ‘R1’ can be com-
bined into a single dataset as with ‘Rk = [X(k)1| X(k)2 |
…| X(k)a]’ and ‘R1 = [X(1)1| X(1)2 |…| X(1)b]’, ‘{Rk, R1} =Rj

[X(j)1| X(j)2 |…| X(j)a | X(j)a+1| X(j)a+2 |…| X(j)a+b] ’ (a,b;
positive integers). In this way, classical datasets that are
classified in the Stevens scales of measurement could be
mined and combined on a higher abstract structure level.
To help better understand the concept, a sequence of
schemes illustrating the principles of our model is pre-
sented in Figure 5.
Subject to future improvements, we envisage that this

compact description is versatile to provide better data
mining/data usage than from existing methods, although
a final version is far from complete at this early stage.
§3. Supplementary suggestions and limitations
If the four arithmetic operations are appropriate in hand-
ling the values from clinical assessments, representation
by “Ratio scales” (in some cases, the “modular scale” with
suitable modulo number previously mentioned) might be
effective in describing the clinical treatments or studies.
The “Numerical rating scale (NRS)” with range ‘0–10’
[13,14] illustrates the point where the modulo 11 additive
Figure 5 Schemes for data mining and combination in some higher a
four types of scales of measurement (Stevens classification), is re-interprete
defined that is composed as the product of each type of operation for all d
‘Rj’s are constituted as an “operational tree”. Fourth, ‘Rj’ with any arbitrary j
group ‘Z11’ arises as a natural modular scale. In contrast,
similar approaches might be difficult for a “visual analogue
scale” [15,16] where values could take any real number.
Whereas rating scales systemized as abstract algebra-

like form may enable a more generalized/sophisticated
understanding, establishing a link between fields of clin-
ical medicine and abstract algebra, and mixed states and
operators in vector-like notation as in (vii)–(xi), does not
always assure more concise manipulations. A mixed
treatment as exemplified in (vii)–(xi) might not always
yield optimal results at present. In general, combining
group and field-like structures within ‘Rj’ may cause some
confusion in handling the ‘Rj’s although benefits accrue
through operational compliance and convenience in deal-
ing with the abstract algebra. For description and records,
a vector-like definition ‘Rj’ may not always be advanta-
geous in which only the four types I)–IV) are used (par-
ticularly for ‘I)’, the “nominal scale”, where systematization
of operation seems to be impossible). Nevertheless, we
infer that in the handling of operations in mixed-notation
like ‘Rj’, the classification and synthesis of scales of meas-
urement in some group/field-like form may be devised in
a more rigorous methodology in future improvements.
That apart, similar, redundant, and obscure compo-

nents may have been incorporated into the ‘Rj’s descrip-
tion without discretion. The ‘Rj’ in such instances loses
validity and versatility in terms of a concise composition
of scales. This is considered to result from the fact that a
total state of a certain disease or a condition of a patient
bstract structure level. First, the classical dataset, classified by the
d as a group/field-like operational structure. Second, a vector ‘Rj’ is
atasets other than for those classified as “Nominal scale”. Third, the
(j = 1, 2,…, m) could be mined and combined as “hierarchical clusters”.
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is not always composable or describable via the combin-
ation of partial components. This implies that a larger
number of components is not always desirable for as-
sessment or rating scales.
Unfortunately, almost all current assessment scales in

medicine are handled as if they were ratio scales although
almost all are just ordinal scales. That might introduce
considerable futility and/or waste of scientific resources.
As previously indicated, some clinical scales (e.g., TNM
classification) should be represented as an ordinal scale
accompanied by ‘0’ with no absolute need for a quantita-
tive calibration (modular scale). Although a combination
composed of entirely ratio scales seems to be difficult or
impossible, we believe at least that appropriate operational
structures (e.g., group, field) should always be selected that
satisfied the conditions in instances like composition of
scale, analysis, and interpretation of the results. These
structures must be recognized clearly by users per each
assessment to avoid misestimation, overconfidence, and
complacency in scales.

Conclusions
The Stevens classification of scales of measurement can
be re-interpreted and modelled as some abstract algebra-
like systematization. Moreover, a vector-like notation using
mixed types of operations and a hierarchical structure-like
systematization are possible enabling a sophisticated means
to classify, update, monitor, and forecast patient treat-
ments. Better data mining/data usage and efficacy is ex-
pected and will be considered in future studies.

Appendix
Appendix A
Using ‘N = 5’ for the scale of a certain symptom or clin-
ical finding with set Z5 ≡{0, 1, 2, 3, 4}, we suppose ‘X1 = 1’
(∈ set Z5) for the initial state and ‘X2 = 4’ (∈ set Z5) for the
final state. Expressed as ‘X1*X(1→2) = X2’, the change
can be determined as ‘X(1→2) = X2 – X1 (mod 5) = 4 –
1 (mod 5) = 3 (mod 5) (∈ Z5)’.

Appendix B
Suppose ‘the body-temperature thermometer’ (deg C; de-
gree Celsius) changes from ‘T1 = 36.7 (deg C)’ to ‘T2 = 35.1
(deg C)’. Because ‘T1 ◦T(1→2) = T2’, an operator part is cal-
culated as ‘T(1→2) = T2 − T1 = 35.1 − 36.7 (deg C) = − 1.6
(deg C)’. For an another example, when there are two
clock times for the onset of sleep ‘t1 = 21 (/24 hrs)’ and
‘t2 = 19.5 (/24 hrs)’, the operator part is determined as ‘t(1→2)

(/24 hrs) = t2 − t1 (/24 hrs) = 19.5 − 21 (/24 hrs) = −1.5
(/24 hrs) = 24 −1.5 (/24 hrs) = 22.5 (/24 hrs)’.

Appendix C
Provided [WBC] changes in the following manner: ‘5000
(/mm3) (= W1) →18000 (/mm3) (=W2). Because ‘W1 # W
(1→2) = W2’, the operator denoted by ‘W(1→2)’ for addition
is derived from ‘W(1→2) = W2 − W1 = 18000 − 5000 =
13000 (/mm3)’. Collectively, the operator is determined by
division: ‘W(1→2) = W2/W1 =18000/5000 (= 3.6) (/mm3)’,
For an another example, if ‘[Na]1 = 145 (mEq/l)’ changes

into ‘[Na]2 = 128 (mEq/l)’, because ‘[Na]1 # [Na](1→2) =
[Na]2’, the operator for addition is obtain from ‘[Na](1→2) =
[Na]2 − [Na]1 = 128 − 145 = − 17 (mEq/l)’. Collectively,
the operator for division is ‘[Na](1→2) = [Na]2/[Na]1 = 128/
145 (mEq/l)’.

Appendix D
R(1→2) = R2 − R1

= [5 (mod 7) | 19.5 (/24 hrs) | 18000 (/mm3) | 128
(mEq/l) | X(2)5 (…)] − [2 (mod 7) | 21 (/24 hrs) | 5000
(/mm3) | 145 (mEq/l) | X(1)5 (…)],
= [5 − 2 (mod 7) | 19.5 − 21 (/24 hrs) | 18000 − 5000

(/mm3) | 128 − 145 (mEq/l) | X(1→2)5 (…)],
= [3 (mod 7) | − 1.5 (/24 hrs) | 13000 (/mm3) | − 17

(mEq/l) | X(1→2)5 (…)].
R(2→3) = R3 − R2

= [3 (mod 7) | 22 (/24 hrs) | 7000 (/mm3) | 158 (mEq/l)] |
X(3)5 (…)] − [5 (mod 7) | 19.5 (/24 hrs) | 18000 (/mm3) |
128 (mEq/l) | X(2)5 (…)],
= [3 − 5 (mod 7) | 22 − 19.5 (/24 hrs) | 7000 − 18000

(/mm3) | 158 − 128 (mEq/l) | X(2→3)5 (…)],
= [− 2 (mod 7) | 2.5 (/24 hrs) | − 11000 (/mm3) | 30

(mEq/l) | X(2→3)5 (…)],
= [5 (mod 7) | 2.5 (/24 hrs) | − 11000 (/mm3) | 30

(mEq/l) | X(2→3)5 (…)].

Appendix E
R1◊R(1→2)◊R(2→3) = [2 (mod 7) | 21 (/24 hrs) | 5000
(/mm3) | 145 (mEq/l) | X(1)5 (…)]◊[3 (mod 7) | − 1.5
(/24 hrs) | 13000 (/mm3) | − 17 (mEq/l) | X(1→2)5 (…)]◊
[5 (mod 7) | 2.5 (/24 hrs) | − 11000 (/mm3) | 30 (mEq/l)
| X(2→3)5 (…)],
= [2 + 3 + 5 (mod 7) | 21 − 1.5 + 2.5 (/24 hrs) | 5000 +

13000 − 11000 (/mm3) | 145 − 17 +30 (mEq/l) | X(3)5 (…)],
= [10 (mod 7) | 22 (/24 hrs) | 7000 (/mm3) | 158

(mEq/l) | X(3)5 (…)],
= [3 (mod 7) | 22 (/24 hrs) | 7000 (/mm3) | 158 (mEq/l)

| X(3)5 (…)].

Appendix F
For the 3rd and 4th components, only addition/subtraction
is demonstrated collectively for ease in comprehension.
R(2→10) = R10 − R2 = [0 − 5 (mod 7) | 17 − 19.5 (/24 hrs)

| 9000 − 18000 (/mm3) | 130 − 128 (mEq/l) | X(2→10)5

(…)] = [− 5 (mod 7) | − 2.5 (/24 hrs) | − 9000 (/mm3) | 2
(mEq/l) | X(2→10)5 (…)],
R(10→11) = R11 − R10 = [6 − 0 (mod 7) | 20 − 17 (/24 hrs)

| 20000 − 9000 (/mm3) | 149 − 130 (mEq/l) | X(10→11)5
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(…)] = [6 (mod 7) | 3 (/24 hrs) | 11000 (/mm3) | 19 (mEq/l)
| X(10→11)5 (…)],
R(11→12) = R12 − R11 = [4 − 6 (mod 7) | 23 − 20 (/24 hrs)

| 6000 − 20000 (/mm3) | 140 − 149 (mEq/l) | X(11→12)5

(…)] = [− 2 (mod 7) | 3 (/24 hrs) | − 14000 (/mm3) | − 9
(mEq/l) | X(11→12)5 (…)],
R(10→13) = R13 − R10 = [1 − 0 (mod 7) | 18 − 17 (/24 hrs)

| 5000 − 9000 (/mm3) | 135 − 130 (mEq/l) | X(10→13)5

(…)] = [1 (mod 7) | 1 (/24 hrs) | − 4000 (/mm3) | 5 (mEq/l)
| X(10→13)5 (…)],
R(13→17) = R17 − R13 = [2 − 1 (mod 7) | 23.5 − 18 (/24 hrs)

| 3000 − 5000 (/mm3) | 150 − 135 (mEq/l) | X(13→17)5 (…)] =
[1 (mod 7) | 5.5 (/24 hrs) | − 2000 (/mm3) | 15 (mEq/l)
| X(13→17)5 (…)].
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