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Abstract

Background: In early-stage of cancer, primary treatment can be considered as effective at eliminating the tumor for
a non-negligible proportion of patients whereas for the others it leads to a lower tumor burden and thereby
potentially prolonged survival. In this mixed population of patients, it is of great interest to detect complex differences
in survival distributions associated with molecular markers that potentially activate latent downstream pathways
implicated in tumor progression.

Method: We propose a novel model-based score test designed for identifying molecular markers with complex
effects on survival in early-stage cancer. From a biological point of view, the proposed score test allows to detect
complex changes in the survival distributions linked to either the tumor burden or its dynamic growth.

Results: Simulation results show that the proposed statistic is powerful at identifying departure from the null
hypothesis of no survival difference. The practical use of the proposed statistic is exemplified by analyzing the
prognostic impact of Kras mutation in early-stage of lung adenocarcinomas. This analysis leads to the conclusion that
Kras mutation has a significant negative prognostic impact on survival. Moreover, it emphasizes that the complex role
of Kras mutation on survival would have been overlooked by considering results from the classical logrank test.

Conclusion: With the growing number of biological markers to be tested in early-stage cancer, the proposed score
test statistic is a powerful tool for detecting molecular markers associated with complex survival patterns.
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Background
Entering the era of so-called personalized oncology
through the growing use of molecular markers, one of
the main questions concerns their capacities to refine
patient prognosis beyond classical bio-clinical risk factors.
From clinically and pathologically well-defined group of
patients, these markers need to demonstrate their abilities
to reveal heterogeneity in survival times among patients.
For patients with early-stage of cancer treated with cura-
tive therapy, the problem is particularly challenging since
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molecular markers often reflect complex interplay of dow-
stream pathways that drive either the remaining tumor
burden or its dynamic growth.
Cure rate models, especially those with biological inter-

pretation, are well-suited for analyzing such data. These
models are formulated by assuming that the popula-
tion under study is composed of two subpopulations of
patients, those who have no persitant tumor (sometimes
referred as long-term survivors or cured patients) and
those who have persistent tumor burden and are suscepti-
ble of experiencing a disease recurrence. In the literature,
the oldest approach relies on two-component mixture
models which incorporate a cure fraction in a paramet-
ric or semi-parametric framework (for a review, see [1]).
A different approach, which defines the cumulative haz-
ard as a bounded increasing positive function and relies
on a mechanistic model of cancer, has been introduced
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by Yakovlev et al. [2-4]. This cure rate model (some-
times referred as promotion time cure model [5]) defines
the improper survival distribution whereby each individ-
ual is exposed to recurrences that arise from unobserv-
able tumor clonogens surviving the primary treatment.
A clonogen is defined as a cell (or a group of geno-
typically identical cells) that has the capacity to divide,
disseminate and proliferate indefinitively for giving rise to
local or distant tumor recurrence. Each surviving clono-
gen has its own dynamic growth and the tumor is detected
as soon as any one of the clonogens is able to pro-
duce a clinically overt tumor. The elapsed time between
the end of the primary treatment and the clinical dis-
ease corresponds to the time-to-event. Assuming relevant
probability distributions for the number of (unobserved)
clonogens and for the clonogenic’s time-to-event, one can
deduce the marginal (or population) survival distribution.
From biological considerations, the Poisson distribution
has been the classical choice for the distribution of the
number of clonogens [4,5]. Relying on this latter mod-
elling assumption, marginal semi-parametric cure models
have been proposed from which different statistics have
been deduced to test for identity of the survival curves
[6-8]. However, a limitation of the Poisson distribution,
on which these models are built, is that it is not flexible
enough for allowing, among uncured patients, different
probability distribution of the number of surviving clono-
gens. In particular, if the probability of being cured (no
clonogen) after the primary treatment is identical across
all patients, it necessarily implies a same distribution
for the number of surviving clonogens among uncured
patients. In this context and from a Bayesian perspective,
Yin et al. [9] have proposed a family of transformation
cure models that gives more flexibility for modelling sur-
vival curves and includes the two-component mixture
model and the Poisson cure model as special cases [9,10].
However, this family does not provide an easy biologi-
cal interpretation regarding changes in the cure fraction,
the distribution of surviving clonogens and the tumor
progression.
In this work and based on an alternative mechanistic

cure rate model, we propose a novel score test statistic for
detectingmolecular markers associated with complex sur-
vival patterns in early-stage cancer. After introducing an
alternative semi-parametric cure rate model that allows
to describe changes in the survival distributions linked to
either the tumor burden (cure rate fraction and surviving
clonogens distribution) or its dynamic growth (time-to
event distribution), a model-based score test is proposed.
This novel score test is designed for detecting molecu-
lar markers associated with complex survival patterns in
early-stage cancer. We illustrate the clinical interest of this
statistic by investigating the impact on survival distribu-
tions of genetic (Kras mutation), genomic (chromosomal

aberration) and histopathologic markers among patients
with early-stage lung adenocarcinoma.

Methods
Modeling background
Here, we focus on a binary variable which allocates the
patients in two groups i = 0, 1 (with ni subjects in group
i (n = n0 + n1)). For each patient j, Gj denotes the indi-
cator variable of group 1. For the lung cancer dataset, this
variable indicates the presence/absence of Kras mutation.
In the following, a tumor is modeled as a set of clono-
gens, with identical properties and independent evolution.
For each patient j in group i, let the random variables Tk

ij
associated to the kth latent (unobservable) clonogen, be
the time-to-progression until a detectable recurrence with
(clonogenic) survival functionAi(t). LetKij be the number
of latent clonogens that survived the treatment for patient
j in group i. We suppose that for the two groups, Kij is
distributed with probability mass function �0,�1 and Kij
is supposed to be independent of Tk

ij . Let denote T∗
ij =

min1≤k≤Kij(Tk
ij ) the time-to-event of the earliest clonogen

and Cij the censoring time. We assume that T∗
ij and Cij

satisfy the condition of independent censoring [10]. For
each subject, the data consist of Xij = min(T∗

ij ,Cij) the
observed time of follow-up, δij = 1(Xij=T∗

ij )
the indicator of

the occurence of the earliest clonogen and Gj the indica-
tor variable of group 1.We also denote Yij(t) = 1(t≤Xij) the
indicator of being at risk for an event at time t.
For each patient j in group i with Kij latent clono-

gens, the conditional (patient-specific) survival function is
expressed as:

Sij(t|Kij) = Pr
(
T∗
ij > t

)
= Pr

(
T1
ij > t, . . . ,TKij

ij > t
)

= Ai(t)Kij

Thus, the marginal (population) survival function (for
group i) is given by:

Si(t) =
∞∑
k=0

Sij(t|k)Pr
�i

(k) =
∞∑
k=0

Ai(t)k Pr
�i

(k)

Assuming that the number of clonogens in treated
tumors is following for the two groups a Poisson distribu-
tion [2-4], the marginal distribution is such as : Si(t) =
exp {−ξi [1 − Ai(t)]} where ξi (i.e. the Poisson parame-
ter) is the mean number of clonogens and exp(−ξi) is the
probability of having no surviving clonogen (cure frac-
tion). From this framework, one can modelize short and
long-term effects of a marker [6-8]. The short-term effect
(linked to Ai(t)) formulates the shape of the difference
between the (clonogenic) latent survival functions. The
long-term effect (linked to ξi) quantifies the difference in
the long-term survivors rates. It is straighforward to see
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that a same cure fraction between the different groups
(no long-term effect) implies a same distribution for the
number of surviving clonogens.
In the following, we consider a family of discrete dis-

tributions proposed by Katz [11] for which the Poisson
distribution is considered as the benchmark model (null
model). This family allows to consider different condi-
tional probability mass functions for the number of sur-
viving clonogens (Pr�i(Kij = u|Kij > 0)) with a same cure
fraction Pr�i(Kij = 0).

Distribution of the number of clonogens
We recall that Katz [11,12] proposed a family of dis-
crete distributions with the property that successive count
probabilities satisfy the following first-order recurrence
formula:

Pr(x + 1)
Pr(x)

= ω + θx
1 + x

; x = 0, . . . ,∞+

where ω > 0 and θ < 1.
Katz showed that the probability generating function is

such as:

g(s;ω, θ) = [
(1 − θ)−1 × (1 − θs)

]− ω
θ for θ �= 0

g(s;ω, θ) = exp [−ω (1 − s)] for θ = 0

with |s| ≤ 1.
It follows that the initial probability is equal to: Pr(0) =

p0 = (1 − θ)
ω
θ for θ �= 0 (p0 = e−ω for θ = 0).

Thus, this family allows us to consider different condi-
tional probability mass functions (Pr(x|x > 0)) with a
same p0.
Moreover, it is worth noting that ω = μ2/σ 2 and θ is

linked to the dispersion index (variance-to-mean ratio)
such as : σ 2/μ = (1 − θ)−1. This family covers various
distributions with the property of being under-dispersed
(θ < 0), over-dispersed (θ > 0) or equi-dispersed (θ =
0). This latter case corresponds to the Poisson distribu-
tion. For θ < 0, it includes Binomial distributions (N =
−ω/θ ; p = θ/ (θ − 1)) whereas for θ > 0 it includes Neg-
ative Binomial distributions (u = ω/θ ;P = θ/ (1 − θ)).
Relying on this family of distributions, we propose to

consider the following semi-parametric cure model.

Improper survival function
According to the above results, a semi-parametric
improper cure model, which encompasses the Poisson
cure model, is obtained as follows:
The marginal survival function is defined such as:

Si(t) =
∞∑
k=0

Sij(t|k)Pr
�i

(k) =
∞∑
k=0

Ai(t)k Pr
�i

(k)

where Pr�i(k) is the Katz probability mass function and
Ai(t) is a decreasing function such as 1 ≥ Ai(t) ≥ 0.

Thus, we have the following general survival functions
in group i = 0, 1:

S0(t) = exp {−ω0 [1 − A0(t)]}
S1(t) = [

(1 − θ)−1 × (1 − θA1(t))
]− ω1

θ
(1)

The corresponding cumulative hazard function and
hazard function are noted �i(t) = − log [Si(t)] and
λi(t) = ∂

∂t�i(t), respectively. It is straighforward to see
that S0(t) and S1(t) are improper survival functions with
cure fractions S0(∞+) = e−ω0 and S1(∞+) = (1 − θ)

ω1
θ ,

respectively. Here,A0(t) andA1(t) are arbitrary latent sur-
vival functions decreasing with time from one to zero.
We can give different shapes by modeling the function
such as A1(t) = A0(t,α) where D0(t,α) = − ∂

∂t A0(t,α)

refers to the corresponding density function and α is a
real parameter with A0(t, 0) = A0(t). In the following
section, we will consider a classical log-linear relationship
such as A0(t,α) = A0(t)e

α . Thus, the parameter α formu-
lates the shape of the difference between the clonogenic
survival functions for group 0 and 1. When α ≥ 0 (resp.
α ≤ 0) patients belonging to groupe 1 have earlier (resp.
later) relapses as compared to group 0. Here, the Poisson
model is considered as the reference one which leads to
the marginal survival S0(t). Changes in the distribution of
the number of clonogens are interpreted with regard to
this model. It is worth noting that the Poisson cure model
can also be considered as representing an homogeneous
multi-clonogenic model and departure from this model
can be interpreted as either an under-dispersed (sin-
gle clonogenic model) or over-dispersed (heterogeneous
multi-clonogenic model) situation.
It is useful for the following to write the ratio of the haz-

ard functions λ0(t) and λ1(t) deduced from model (1) so
that:

λ1(t) = λ0(t) exp
{
log [ω1/ω0] + log [D0(t,α)/D0(t)]

− log [1 − θA0(t,α)]
}
.

In the following, we denote γ = log [ω1/ω0]. From a
biological perspective, belonging to group 1 is associated
with changes in the cure fraction, the conditional distri-
bution of the number of surviving clonogens or the latent
survival (tumor progression) through the parameters of
interest γ , θ and α. If α = 0, the latent (clonogenic) sur-
vival curves are identical between the two groups what-
ever the distribution of the number of clonogens. If θ = 0,
there is a same probability distribution family (Poisson)
for the number of clonogens whatever the dynamic of the
clonogens ( α) or the cure fraction (γ ). This latter case cor-
responds to the classical Poisson cure rate model. If θ =
α = 0, it corresponds to the proportional hazards hypoth-
esis whereby the relative risk is constant over time but
the improper survival distributions converges to different
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cure fractions. Moreover, it should be noted that using
a different parametrization and constraining the quantity
θ/ω1 to lie on [0, 1] leads to the transformation curemodel
[9].
In this work, the general null hypothesis to be testedH0 :

θ = α = γ = 0 is the lack of survival difference between
the two groups.

The proposed statistic
In the following, we derive a score statistic which is
optimal under a classical log-linear relationship such as
A0(t,α) = A0(t)e

α so that the ratio of the hazard functions
between the two groups is such as:

λ1(t) = λ0(t) exp
{
γ + α + log [A0(t)]

(
eα − 1

)
− log

[
1 − θA0(t)e

α
]}

Thus, the log-partial likelihood derived under this mul-
tiplicative model is such as:

log L (θ ,α, γ ;G) = 
n
j=1δj

{
υ(tj)Gj

− log
[ n∑
k=1

Yk
(
tj
)
eυ(tj)Gk

]}

where υ(t) = γ + α + log [A0(t)] (eα − 1) − log [1−
θA0(t)e

α ]
The score vector is derived from the first derivative

of the log-partial likelihood with respect to θ , α and γ

evaluated under H0 : θ = α = γ = 0.
The score vector is deduced under the null hypothesis

(H0 : θ = α = γ = 0). The three components are as
follows:

V̂H0,α =
n∑

j=1
δj

[
1 + log

(
1 − �0(tj)

ω0

)]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Gj −

n∑
k=1

Yk
(
tj
)
Gk

n∑
k=1

Yk
(
tj
)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

V̂H0,θ =
n∑

j=1
δj

[
1 − �0(tj)

ω0

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Gj −

n∑
k=1

Yk
(
tj
)
Gk

n∑
k=1

Yk
(
tj
)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

V̂H0,γ =
n∑

j=1
δj

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Gj −

n∑
k=1

Yk
(
tj
)
Gk

n∑
k=1

Yk
(
tj
)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

For computing the score statistic, we should substi-
tute �0(t) and ω0 by efficient estimators �̂0(t) and ω̂0
computed under the null hypothesis H0. Here, �̂0(t) =∑n

j=1
∫ t
0 {∑n

k=1 Yk(s)}−1dNj(s), where Nj(t) = 1{Xj≤t,δj=1}
is the left-continuous version of the Nelson-Aalen esti-
mator for the cumulative hazard [13] obtained by using
the pooled sample and ω̂0 = �̂0(tmax) is the maximum

value of this estimator computed at the last observed fail-
ure time tmax. In our problem, the limiting distribution
of the proposed statistic where ω0 is replaced by ω̂0 is
obtained by using the results of Pierce [14] in the context
of improper survival distribution [8]. Here, ω̂0 is an effi-
cient estimator of ω0 if the upper bound of the domain
for the survival distribution is less or equal to the upper
bound of the domain for the censoring distribution [8,14].
In practice, this latter condition expresses the fact that the
uncured patients should experience the event within the
maximum length of follow-up. This condition is assumed
to be verified and is required for establishing the limiting
distribution of the proposed statistic.
The corresponding information matrix Î is such as:

∂2 log L
∂2α

=
n∑

j=1
δj

[
1 + log

(
1 − �0(tj)

ω0

)]2 {
�j

}

∂2 log L
∂2θ

=
n∑

j=1
δj

[
1 − �0(tj)

ω0

]2 {
�j

}
;
∂2 log L

∂2γ
=

n∑
j=1

δj
{
�j

}
and
∂2 log L
∂α∂θ

=
n∑

j=1
δj

[
1 + log

(
1 − �0(tj)

ω0

)] [
1 − �0(tj)

ω

] {
�j

}

∂2 log L
∂γ ∂θ

=
n∑

j=1
δj

[
1 − �0(tj)

ω0

] {
�j

}

∂2 log L
∂α∂γ

=
n∑

j=1
δj

[
1 + log

(
1 − �0(tj)

ω0

)] {
�j

}

with �j =
[
S(1)(0,0,0,t)
S(0)(0,0,0,tj)

]2 −
[
S(2)(0,0,0,tj)
S(0)(0,0,0,tj)

]

where S(r)(0, 0, 0, t) = n−1
n∑

k=1
Yk

(
tj
)
Gr
j with r = 0, 1, 2.

The elements of the score vector and of the
information matrix (IH0 ) are computed by using
efficient estimators of �0(tj) and ω0 as given above.

Finally, the statistic

SH0 =
(
V̂H0,α , V̂H0,θ , V̂H0,γ

)
Î−1
H0

(
V̂H0,α , V̂H0,θ , V̂H0,γ

)′

(2)

is asymptotically distributed under H0 as a chi-square
with three degrees of freedom.

Results
Simulation study
We conducted a simulation study to evaluate the
finite-sample performance of the proposed statistic. We
reported the size of the test as well as the power proper-
ties of the proposed test (noted SH0 ) together with those
obtained with the classical Logrank test (noted LR) [10].
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We considered a single binary variable taking a value
of 0 (e.g. absence of a marker) or 1 (e.g. presence of a
marker) with half of the individuals having value 1. We
assumed that the survival distribution (for group 0) is
such as: S0(t) = exp[−ω0(1−e−t)]. For group 1, we inves-
tigated over/under-dispersed scenarios where S1(t) can
be viewed as a marginal improper survival function with
either Negative binomial (overdispersion) or Bernoulli
(underdispersion) distributions for the number of clono-
gens. For overdispersion (θ > 0), we considered cases

such as : S1(t) =
(
1−θe−eα t

1−θ

)− ω1eγ
θ with the same cure

fraction (S0(∞+) = S1(∞+)) or different cure fractions
(S0(∞+) �= S1(∞+)) and with/without the same latent
survival function (A0(t,α) = A0(t) = e−t or A0(t,α) �=
A0(t)). For underdispersion ( θ < 0), we considered cases
such as : S1(t) =

(
1−θe−e−α t

1−θ

)
with the same cure fraction

or different cure fractions and with/without the same
latent survival function.
Various values for the parameters were considered. For

overdispersed cases, we took θ = 0.78 and for the under-
dispersed cases we took θ = −1 . For the baseline cure
rate fraction, we took: S0(∞+) = e−ω0 = 0.30, 0.50, 0.70.
The values for ω1 are chosen so that the cure fractions are
equal or different with eγ being equal to: 1 and 1.2. For
the latent survival distribution shift, we considered val-
ues eα = 1, 1.25, 1.5. The censoring time Cj was generated
from an exponential distribution with parameter ζ . Val-
ues for ζ were computed from the chosen percentage of
censoring and from the parameters of the considered dis-
tributions. The percentage of censoring below refers only
to the percentage of censored observations without the
cure fraction. We investigated no censoring and 30% cen-
soring. The number of subjects within a group was chosen
to be 100. For each configuration, 500 replications were

Figure 1 Theoretical survival curves for seven situations. The reference curve is in black. Survival curves for over-dispersed cases
(resp. under-dispersed) are in red (resp. in blue).
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Table 1 Simulation results for overdispersed cases with 30% cure fraction

Left panel (1a) uncensored cases Right panel (1b) censored cases

Over/p0 = 30% eγ = 1 eγ = 1.2 Over/p0 = 30% eγ = 1 eγ = 1.2

cens = 0% cens = 30%

LR eα = 1 0.12 0.57 LR eα = 1 0.16 0.62

SH0 eα = 1 0.58 0.80 SH0 eα = 1 0.47 0.79

LR eα = 1.25 0.22 0.69 LR eα = 1.25 0.29 0.77

SH0 eα = 1.25 0.87 0.97 SH0 eα = 1.25 0.79 0.95

LR eα = 1.50 0.27 0.76 LR eα = 1.50 0.42 0.83

SH0 eα = 1.50 0.96 0.98 SH0 eα = 1.50 0.90 0.97

performed and the levels and powers of the two tests were
estimated at the nominal level 0.05.
To illustrate these scenarios, we plotted (Figure 1) the

theoretical marginal survival curves obtained for seven
situations considering a baseline cure fraction of 50% (i.e.
S0(∞+) = 0.5) . The marginal survival curve for group
0 (reference curve) is in black. The survival curves for
over-dispersed cases (θ = 0.78) with same cure fraction
and latent survival, same cure fraction but different latent
survival functions (latent survival shift: eα = 1.5) and dif-
ferent cure fractions (cure fraction shift: eγ = 1.2) and
latent survival functions are in red. The survival curves for
under-dispersed cases (θ = −1) with same cure fraction
and latent survival, same cure fraction but different latent
survival functions (latent survival shift: eα = 1.5 ) and dif-
ferent cure fractions (cure fraction shift: eγ = 1.2) and
latent survival functions are in blue.
The estimated levels of the proposed test and the

logrank test and under the null hypothesis of no sur-
vival difference between the two groups are within the
binomial range [ 0.031; 0.069] for either censored cases or
uncensored cases whatever the level of the cure fraction.
Tables 1a, 2a and 3a (resp. Tables 1b, 2b and 3b) show
the results obtained for uncensored (resp. censored) cases
with overdispersion whereas Tables 4a, 5a and 6a (resp.
Tables 4b, 5b and 6b) show the results for uncensored
(resp. censored) cases with underdispersion.

For uncensored cases, the power gains of the proposed
test are striking for either differences in cure fraction or
latent survival distribution. Gains of power of the pro-
posed test are in decreasing order of the cure fraction.
In any case, the power of the proposed test is higher of
those of the logrank test. For the censored case, theses lat-
ter trends are also noticed. The main difference relative
to the uncensored case is in the magnitude of the power
values which are more markedly decreased. In any case,
the same patterns are observed for the overdispersed and
underdispersed cases.

Lung adenocarcinoma example
In early-stage lung cancer (stage I), surgical resection can
be considered as effective at eliminating the tumor burden
for a non-negligeable proportion of patients whereas, for
the others, it leads to a lower tumor burden and thereby
prolonged survival. The majority of tumor recurrences
are detected within two years after the surgical resec-
tion and the five-year survival following the diagnosis is
frequently considered as a cure, the main threats being
other smoking-related diseases such as cardiopulmonary
disorders.
The dataset considered in this study is based on

a homogeneous series of 134 patients with stage IB
lung adenocarcinomas who underwent surgical resection.
All specimens underwent pathological review. Here, we

Table 2 Simulation results for overdispersed cases with 50% cure fraction

Left panel (2a) uncensored cases Right panel (2b) censored cases

Over/p0 = 50% eγ = 1 eγ = 1.2 Over/p0 = 50% eγ = 1 eγ = 1.2

cens = 0% cens = 30%

LR eα = 1 0.07 0.27 LR eα = 1 0.15 0.38

SH0 eα = 1 0.38 0.57 SH0 eα = 1 0.28 0.48

LR eα = 1.25 0.09 0.35 LR eα = 1.25 0.21 0.55

SH0 eα = 1.25 0.69 0.83 SH0 eα = 1.25 0.48 0.69

LR eα = 1.50 0.08 0.41 LR eα = 1.50 0.29 0.66

SH0 eα = 1.50 0.84 0.94 SH0 eα = 1.50 0.63 0.83
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Table 3 Simulation results for overdispersed cases with 70% cure fraction

Left panel (3a) uncensored cases Right panel (3b) censored cases

Over/p0 = 70% eγ = 1 eγ = 1.2 Over/p0 = 70% eγ = 1 eγ = 1.2

cens = 0% cens = 30%

LR eα = 1 0.07 0.15 LR eα = 1 0.12 0.20

SH0 eα = 1 0.29 0.33 SH0 eα = 1 0.14 0.27

LR eα = 1.25 0.07 0.19 LR eα = 1.25 0.14 0.31

SH0 eα = 1.25 0.40 0.54 SH0 eα = 1.25 0.16 0.39

LR eα = 1.50 0.06 0.21 LR eα = 1.50 0.21 0.42

SH0 eα = 1.50 0.64 0.70 SH0 eα = 1.50 0.22 0.48

Table 4 Simulation results for underdispersed cases with 30% cure fraction

Left panel (4a) uncensored cases Right panel (4b) censored cases

Under/p0 = 30% eγ = 1 eγ = 1.2 Under/p0 = 30% eγ = 1 eγ = 1.2

cens = 0% cens = 30%

LR eα = 1 0.08 0.06 LR eα = 1 0.15 0.05

SH0 eα = 1 0.34 0.45 SH0 eα = 1 0.27 0.31

LR eα = 1.25 0.17 0.07 LR eα = 1.25 0.31 0.14

SH0 eα = 1.25 0.73 0.81 SH0 eα = 1.25 0.53 0.58

LR eα = 1.50 0.29 0.09 LR eα = 1.50 0.48 0.23

SH0 eα = 1.50 0.94 0.95 SH0 eα = 1.50 0.76 0.75

Table 5 Simulation results for underdispersed cases with 50% cure fraction

Left panel (5a) uncensored cases Right panel (5b) censored cases

Under/p0 = 50% eγ = 1 eγ = 1.2 Under/p0 = 50% eγ = 1 eγ = 1.2

cens = 0% cens = 30%

LR eα = 1 0.05 0.07 LR eα = 1 0.07 0.07

SH0 eα = 1 0.13 0.17 SH0 eα = 1 0.08 0.10

LR eα = 1.25 0.06 0.08 LR eα = 1.25 0.10 0.05

SH0 eα = 1.25 0.34 0.39 SH0 eα = 1.25 0.18 0.15

LR eα = 1.50 0.09 0.05 LR eα = 1.50 0.11 0.10

SH0 eα = 1.50 0.60 0.68 SH0 eα = 1.50 0.31 0.28

Table 6 Simulation results for underdispersed cases with 70% cure fraction

Left panel (6a) uncensored cases Right panel (6b) censored cases

Under/p0 = 70% eγ = 1 eγ = 1.2 Under/p0 = 70% eγ = 1 eγ = 1.2

cens = 0% cens = 30%

LR eα = 1 0.06 0.08 LR eα = 1 0.05 0.08

SH0 eα = 1 0.05 0.09 SH0 eα = 1 0.07 0.07

LR eα = 1.25 0.05 0.06 LR eα = 1.25 0.06 0.05

SH0 eα = 1.25 0.10 0.15 SH0 eα = 1.25 0.08 0.07

LR eα = 1.50 0.05 0.06 LR eα = 1.50 0.09 0.05

SH0 eα = 1.50 0.21 0.31 SH0 eα = 1.50 0.10 0.06
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investigated the prognostic impact of three different types
of markers : genetic (Kras exon 2 mutation), genomic
(recurrent copy-number losses on genomc areas 19p13.3
and 19p13.11) and histopathologic (combined marker:
necrosis and differentiation).
We recalled that Kras gene belongs to a gene family

of small G proteins, anchored on the cytoplasmic side of
cell membrane, that play a central role in cell signalling
related to cell proliferation, cell survival and cell motil-
ity (for a review see [15]). Activating mutations of Kras,
which lock the protein in the active conformation, have
been described in numerous epithelial tumors includ-
ing lung adenocarcinomas. In a previous study ([16]), we
have identified two recurrent driver copy-number losses
located on the short arm of chromosome 19 (19p13.3,
19p13.11) that were exclusively deleted in lung adenocar-
cinomas from western european population (as compared
with east-asian populations). Their prognostic impact
have not been previously investigated. The prognostic
impact of histopathological features of lung adenocarci-
noma such as necrosis and tumor differentiation has been
widely debated in the literature but recent studies pointed
out that patients having tumor with necrosis or solid pat-
tern (poorly differenciated) have an unfavorable prognosis
andmay be candidate for adjuvant therapy ([17]). Here, we
investigated the prognostic impact of a simple histopatho-
logical marker that combines information about necrosis
and differentiation level (necrosis associated with a poor
differentiation versus no necrosis or well differentiated).
All patients were genotyped for Krasmutations. Primers

(Kras exon 2) were used to amplify the relevant regions
and DNA sequencing was performed on an ABI3730xl
Sanger sequencer. All mutations were confirmed by bidi-
rectional sequencing. In this study, the percentage of Kras
mutation was 18% (24 cases), 37.6% and 34% displayed
copy loss on 19p13.3 and 19p13.11, respectively, and 23%
of the tumor samples showed necrosis associated with a
poor differentiation. The time-to-event (death) was calcu-
lated from the date of treatment to the time of death or
last follow-up. Overall survival rates were derived from
Kaplan-Meier estimates and given with their 95% confi-
dence intervals. Themedian of follow-up was of four years
and we observed thirty sevent events. For the entire pop-
ulation, overall survival at two years and five years was of
87.2% [81.5-93.3] and 65.4% [56.3-75.9].
When testing for differences in overall survival for Kras

mutation, the logrank test (LR = 1.2, p = 0.26) was
not significant in contrast with the proposed test (SH0 =
9.3, p = 0.025). Figure 2 display the Kaplan-Meier esti-
mates of the survival according to Kras mutation status.
When testing for differences in overall survival for copy-

number loss on genomic areas 19p13.3 and 19p13.11,
the logrank test was not significant for the two areas
(LR19p13.3 = 0.5, p = 0.48; LR19p13.11 = 1, p = 0.33)

whereas the proposed test showed no difference for
19p13.3 (SH0 = 4.3, p = 0.23) but a significant differ-
ence for 19p13.11 (SH0 = 8.2, p = 0.041). Figure 3 display
the Kaplan-Meier estimates of the survival according to
copy-number loss on 19p13.11.
When testing for differences in overall survival for

the combined histopathological marker, the logrank test
(LR = 0.1, p = 0.81) was not significant in contrast with
the proposed test (SH0 = 7.9, p = 0.048). Figure 4 dis-
play the Kaplan-Meier estimates of the survival according
to the combined histopathological marker status.
All the figures show a clear time-varying effect between

the two curves as time goes on. From a biological perspec-
tive, the marginal survival distribution observed for the
Kras positive (activating) mutation, deletion of genomic
area 19p13.11 and necrosis/poor differentiation status can
be interpreted as reflecting molecular changes affecting
either the tumor burden or the dynamic growth.

Discussion
With significant progress in defining homogeneous his-
tological and clinical group of early-stage cancer patients
who sustained a same potential curative therapy, the chal-
lenge is now to find novel molecular markers having capa-
bility to separate patients according to their time-to-event
outcome. This problem can be handled by considering
cure rate models that are specified using either a two-
component mixture model or bounded cumulative hazard
approach.
In this work, a score test is proposed for testing the null

hypothesis of no survival difference in early-stage of can-
cer. From a biological point of view, this score test allows
to detect changes in the cure fraction, the distribution
of surviving clonogens and the tumor progression. It is
derived from a flexible model that describes the impact
of discrete markers on the survival time distribution with
or without a same cure fraction and stems from bio-
logical as well as pragmatic statistical considerations. A
nice feature of the proposed score-type statistic is that
it can be easily implemented since it does not require
to estimate the parameters of the cure model under the
alternative hypothesis. It should be noted that the pro-
posed procedure can be extended for comparing more
than two groups with Poisson cure rate model as the
benchmark model for the reference group. The new alter-
native hypothesis will be such as there is at least one of the
groups that differs from the reference one at some time for
either the distribution of the number of clonogenes or the
latent (clonogenic) survival functions.
Simulation results show that striking gains in power can

be achieved by our proposed test as compared to the clas-
sical Log-rank test. As the cure rate fraction increases,
the power of the test decreases, but remains higher than
that of the logrank test. This latter result is not surprising,
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Figure 2 Kaplan-Meier curves of the overall survival based on Kras mutation status.

Figure 3 Kaplan-Meier curves of the overall survival based on
copy-number loss of 19p13.11 status.

Figure 4 Kaplan-Meier curves of the overall survival based on
the combined histopathological marker.
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since increasing the cure fraction reduces the number of
potential events. In the presence of censoring, the power
of the proposed test decreases, but remains higher than
that of the logrank test. It is worth recalling that the
validity of the proposed score test requires asymptotic effi-
ciency of cumulative hazard rate estimators which implies
that the susceptible patients should experience the event
within the maximum length of follow-up.
In our homogeneous series of early-stage lung adeno-

carcinoma presented in this article, the proposed statistic
is particularly appealing since the majority of the patients
are amenable to cure. If some lung cancer studies have
reported a deleterious prognostic effect of Kras muta-
tion, there is still some debate. In this study, we show a
significant relationship between overall survival and Kras
mutation status that would have been overlooked by only
considering results from the classical logrank test. From a
biological point of view, one could hypothesize that down-
stream effectors of Kras mutation have complex biological
activities affecting either the tumor burden or the dynamic
growth. Moreover, these results also argue in favor of con-
sidering combined histopathological marker in prognostic
studies and give some interesting insights regarding recur-
rent driver copy-number loss on genomic area 19p13.11
that may require future exploration. In further works, it
could be of interest to estimate the parameters that are
associated to survival differences. For such purpose, the
estimation procedure introduced by Tsodikov [18] could
be envisaged.

Conclusion
In summary, detecting molecular markers associated with
complex survival patterns in early-stage cancer is of
potential interest for research in enlighting their contri-
bution to the natural history of tumor disease. We believe
that our proposed score test statistic is a powerful tool
for detecting molecular markers associated with complex
survival patterns. Moreover, it should be noted that this
test statistic can be applied in any other medical fields for
which there is the possibility that some patients will not
experience the event of interest.
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