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Abstract

Background: DNA copy number variations (CNV) constitute an important source of genetic variability. The standard
method used for CNV detection is array comparative genomic hybridization (@CGH).

Results: We propose a novel multiple sample aCGH analysis methodology aiming in rare CNVs detection. In contrast
to the majority of previous approaches, which deal with cancer datasets, we focus on constitutional genomic
abnormalities identified in a diverse spectrum of diseases in human. Our method is tested on exon targeted aCGH
array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed
algorithms can be applied as a post—processing filtering to any given segmentation method.

Conclusions: Thanks to the additional information obtained from multiple samples, we could efficiently detect
significant segments corresponding to rare CNVs responsible for pathogenic changes. The robust statistical
framework applied in our method enables to eliminate the influence of widespread technical artifact termed ‘waves'.

Background

DNA Copy—Number Variations (CNVs), gains (duplica-
tions, triplications, amplifications) or losses (deletions) of
chromosomal material, are known to underlie many types
of constitutional genomic disorders and many cancer
types [1,2].

Microarray—based genomic copy—number analysis
became a standard practice in patients with diagnoses,
including developmental delay (DD)/intellectual disability
(ID), autism, and congenital anomalies. Array compara-
tive genomic hybridization (aCGH) is now widely used
for identification of segmental copy—number alterations
in disease genomes [3]. In a typical experiment, DNA
is extracted from two genomic samples (test vs refer-
ence) and labeled differently. Samples are mixed together
and then hybridized to a microarray spotted with DNA
probes. Signal fluorescent intensities of each spot from
both samples are considered to be proportional to the
amount of respective genomic sequence present.
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Assigning significance to signals found in aCGH data
is a challenging task, involving statistical analysis, and
human verification by geneticists. It’s an ongoing effort:
improving, automating, and verifying protocols for detec-
tion of rare CNVs which underlie diverse spectrum of
diseases in human [4-6].

Motivation and related research

In recent years there has been an increase in number of
probes on the array in aCGH technology — the genomic
resolution has improved. Designed high resolution arrays
target in detection of changes in single exons, small as
several hundred base pairs in size, and facilitate a better
detection of CNVs. This helps in clinical interpretation
of changes in patients with various clinical phenotypes,
especially when a CNV overlaps with a gene known to be
causative of the observed clinical phenotype [5].

The progress in array resolution increases challenges in
aCGH data analysis. The main goal when analyzing aCGH
data is to identify genomic regions with rearrangements.
The specific challenge in clinical genetic diagnostics is to
detect strictly pathogenic CNVs [7].

The primary hallmark of CNV’s pathogenicity is its rar-
ity in the population. CNV is considered rare if it is not
polymorphic. An aCGH sample signifies a rare CNV if
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it differs significantly from other samples in the same
genomic region.

Detection of CNVs from aCGH data is a process of sep-
aration from noise contiguous blocks of signal along a
patient’s genome (Figure 1). This analysis process is called
segmentation, and there are plethora of methods and
algorithms for detection of CNVs through segmentation.

Segmentation methods to identify and describe the
structure of the intervals use a variety of approaches,
such as Gaussian models [8], hidden Markov models [9],
wavelets [10] and quantile regression [11].

However, all the mentioned methods have two signif-
icant drawbacks: computational complexity and single
sample restriction. The computational efficiency is a cru-
cial parameter when one intends to analyze samples from
high—resolution arrays (more than 100 K probes). Unfor-
tunately, most of the sophisticated statistical methods for
analyzing aCGH data have been tested on simulated arti-
ficial datasets or on Snijders dataset [12]. This dataset
consists of 15 human cell lines DNA samples hybridized
onto a CGH-array of 2276 probes. Clearly, the size of the
typical clinical data is at least of two orders of magnitude
larger.

Several methods for the simultaneous analysis of many
aCGH samples have been published recently [13-15].
They turned out to be very useful for analyzing can-
cer data because one can exploit frequent rearrangement
patterns.

However, when studying genomic disorders one has
to eliminate non—pathogenic polymorphisms and a quite
different approach should be applied, see e.g. SCOUT
method for rare CNVs developed for SNP microarrays
[16].

Another obstacle, that may have an adverse effect on
aberration calling is the presence of waves. Waviness,
hypothesized to be correlated with the GC content or
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replication timing of the probes was first observed for high
resolution CGH arrays, and recently detected in other
platforms based on DNA hybridization, e.g. ChIP-on-chip
DNA methylation studies [17,18]. Whereas the presence
of waves is clear, the mechanism underlying them remains
unexplained. Many segmentation methods make use of
the apparent breakpoint structures and detect too many
segments when the waves are present. Therefore, seg-
mentation result is significantly biased (the phenomenon
occurs especially in tumor samples [19]) and requires both
wave smoothing preprocessing and rigorous experimen-
tal validation (e.g. using Fluorescence in situ hybridization
(FISH)).

Thus, the set of rearrangement regions detected in
the segmentation phase needs to be cleared of segments
corresponding to non—pathogenic polymorphic changes,
wave patterns, and spurious segments resulting from dis-
rupted DNA probes.

Our results
In our study, we have focused on in silico detection,
and supervised verification, of rare CNVs (i.e. non—
polymorphic and outstanding) underlying diverse spec-
trum of diseases in human. We analyze aCGH samples
from a cohort of 366 patients (180 K probes custom exon—
targeted CGH array [5]) from patients with developmental
delay/intellectual disability, epilepsy, or autism. Patients
were examined by Institute of Mother and Child, Warsaw,
Poland (IMC). We develop and apply novel robust out-
liers detection procedure to identify aberration associated
segments corresponding to the potentially pathogenic
changes. We simultaneously process all accessible samples
from patients to strengthen information about rearrange-
ments patterns.

To this task we create a procedure which analyzes aCGH
data from all samples (a logratio matrix), and detects

Figure 1 Processing of logratio data. In each subfigure, rows corresponds to samples and columns to probes. On the left: the effect of rank
transformation; the same fragment of the genome represented by logratios (a) and their column ranks (b). The wave pattern is eliminated, while
true signal (clear deletion) is strengthen. On the right: the polymorphic region in the middle is surrounded by wave patterns and only one
significant deletion is visible (c); markers found by our algorithm indicate only deleted segment, all other spurious signals are ignored (d).

(d)
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short fragments of k consecutive probes (k—mers), which
are markers of rare CNVs, and which are used to assign
statistical, and clinical, significance to detected CNVs.

We augment typical normalizations steps with data
transformation to ranks. We propose an outlier statis-
tics, based on ranks, which identifies markers as lying in
a 1% tail of the null distribution. This follows the defini-
tion of rare pathogenic CNVs, which are nearly absent in
control population and present in 1% or less of affected
individuals.

From the set of outstanding segments, we sieve out
those corresponding to the non-pathogenic polymor-
phisms, and filter them basing on three main pub-
licly available databases storing the information related
to genomic variations and diseases: International Stan-
dards for Cytogenomic Arrays database (ISCA) [20],
Genetic Association Database (GAD) [21] and Database
of Genomic Variants (DGV) [22].

Our protocol results with a set of medically relevant
CNVs. The validation sets the sensitivity of our method
for rare CNVs detection to be 96%, and the specificity
to be about 94%. We summarize the most interesting 18
CNV segments predicted by our method, that require fur-
ther analysis (e.g. FISH) in the Validation section. These
regions are suspected of being significant to autism, or to
mental retardation.

A preliminary version of this paper was presented as
extended abstract at IEEE International Conference on
Bioinformatics and Biomedicine (BIBM 2011).

Methods

Datasets

The dataset comes from 366 arrays hybridized with DNA
from subjects with epilepsy, autism, or other neurode-
velopmental disorders (developmental delay/intellectual
disability) examined at the IMC Cytogenetics Labs. Each
experiment was performed on the 180 K custom whole—
genome microarray with an exonic—coverage for over
1700 known and candidate genes for neurodevelopmental
disorders [5].

Microarrays were prepared on Agilent platform,
hybridized and scanned by Agilent scanner. We used
Agilent Feature Extraction software with default settings,
which performs back-ground subtraction, array spatial
detrending, dye normalization and logratio calculations
from each microarray [23,24].

For further analysis we used outputted logratios — each
sample consists of a set of ~180 K logratio intensities
mapped to loci in the reference genome hgl8 human
assembly.

FISH, Multiplex ligation-dependent probe amplification
(MLPA), or Polymerase chain reaction (PCR) methods
were used for experimental validation.
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Overview

The overall architecture of our proposed method con-
sists of three main phases: segmentation call, rare CNVs
filtering, and segment significance testing.

For the segmentation phase, we decided to use DNA-
Copy algorithm, based on recursively applying a statistical
test to detect significant CNV breakpoints [25]. The algo-
rithm, often proposed as a standard approach, processes
aCGH data obtained from only a single experiment but
is highly efficient and enables to analyze a new sample
within a few minutes.

During the second phase, we apply the robust out-
liers detection procedure to identify aberration associ-
ated segment corresponding to the potentially pathogenic
changes. In this stage, we simultaneously process all acces-
sible samples to strengthen the information about the
rearrangement patterns. We analyze the matrix of logra-
tios, wherein the columns correspond to probes and rows
to samples. The logratio signals are transformed into
rankings in each column separately; this eliminates the
influence of low quality probes and experimenter’s bias.
Then, we calculate the distances between vectors from
contiguous ranges of probes (called k-mers, i.e. win-
dows of size k), based on the L; (Manhattan) metrics.
We model the distribution of the mean distances to all
other k-mers in each window separately. We classify given
k-mer as an outlier when it belongs to the distribu-
tion tail. Outliers correspond to markers of significantly
outstanding DNA rearrangements and are mapped to
the pre-existing segmentation. In the last step, we fil-
ter out polymorphic segments. If a specific threshold
(based on density of coverage by markers and abso-
lute value of segment’s mean logratio) is met, a segment
along the patient genome is reported and selected to
validation.

During the validation phase, following the methodol-
ogy from Koolen, et al, we conduct exhausting compari-
son with three main databases storing information about
genomic rearrangements and diseases: International Stan-
dards for Cytogenomic Arrays database (ISCA), Genetic
Association Database (GAD) and Database of Genomic
Variants (DGV) [7,20-22].

Outstanding CNVs detection
Although logratio data is already normalized by microar-
ray extraction software, we observe noisy patterns in it:
wave bias and experimenter’s bias (Figure 1, also see
Results and discussion). Wave bias has been documented
in the literature before [19].

To overcome these two pertaining obstacles we propose
an intuitive solution: the idea is to work with logratio sig-
nal relative to other samples, i.e. for any fixed probe to
replace the logratios by their ranks in all samples. The
highly beneficial effect of the algorithm is illustrated on
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Figure 1(a) and (b), which present the fragment of the
genome with hybridization signal coded by logratios and
their rankings, respectively. One can observe that both
wave pattern (causing spurious segment calls) and dis-
rupted probes are eliminated, while keeping the true posi-
tive segments (in this genome fragment one large deletion
is visible).

Our procedure analyzes aCGH data from all samples
(logratio matrix) to detect short fragments of k consecu-
tive probes (k—mers) being the markers of rare CN'Vs.

The idea of markers is based on the definition of rare
pathogenic CN'Vs, which are nearly absent in control pop-
ulation and present in 1% or less of affected individuals.
Hence, we seek for markers in the set of k—mers for all
samples (presented results were obtained for a parame-
ter k = 7). Outlier detection in high dimensional spaces
is a non—trivial task. In our solution, we follow the rec-
ommendation from a survey of outlier detection methods
by Gogoi, et al. to use a distance-based approach with a
suitable choice of metrics [26].

We apply sliding window approach on a ranking trans-
formed logratios matrix. For each window spanning the
range of k columns, we calculate the distances between the
k—mers from all samples. For each k—mer, we compare the
average distance to all others in the same window. Then
we approximate the distribution of average distances and
classify the k—mer as a marker if it lies in a 1% tail of this
distribution.

More formally, consider a logratio matrix L and one of
its k-windows Lg, containing logratio data coming from a
set of patients S = {1, ..., n}, and from consecutive probes
from the set Q = {p,...,p + k — 1} (here probe order-
ing respects probes positions on the reference genome).
The transformation of each of k columns into ranks and
division of resulting ranks by |S| 4 1 yields pseudo—ranks
matrix Ré with elements:

rank of qu in Lg
R=— 121 5€85q€Q

1 |S| +1

Notice, that each k-mer (row of Ré) belongs to k-

dimensional hypercube, i.e. RE € (0, )X, The marginal
distributions of pseudo-ranks for each one of k dimen-
sions can be modeled as uniform!, while the join dis-
tribution of k-mers is not uniform on hypercube (0, l)k ,
because of correlated logratios from consecutive probes
(e.g. the analyzed window covers a region of rearrange-
ments).

Distributions with uniform marginals on hypercube
(0, 1)* are commonly described using copulas [27]. C
is a k-dimensional copula if it is a joint cumulative
distribution function of a k-dimensional random vector
on (0, DX with uniform marginals.
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Our method for discriminating outliers is based on a
statistics computed for each k-mer: mean L, distance to
other k-mers. For s € S, d € (0, inf]:

o ==Y (2

jeS \leQ

id
&= &

For Manhattan distance d = 1 and in the simplified case
of one dimension k = 1 the value of the u statistics for a
patient with pseudo-rank z €[0, 1] converges with |S| —
o0 to:

1
ul(z)zf It —z|dt =22+ (1 — 2)®
0

For k > 1 if we undertake the independence of pseudo-
ranked columns the null distribution Dﬁ , of u! can be
computed as a sum of independent variables. This under-
lines the adequacy of statistics u! as it converges to the
sum of squared euclidean distances from two extreme
corners of hypercube: 0f and 1% (a k-mer in each of the
corners has extreme ranks on every probe, see Additional
file 1 for details).

On the other hand, the null hypothesis may assume a
certain structure of column correlations, e.g. correspond-
ing to a larger group of patients with CNV segments
inside a particular window, and a null distribution may
reflect that. First approach we've taken is to fit as a null
distribution Beta(w, 8) shifted to the appropriate interval
(min(u!'), max(u!)). This outlier detection procedure is
considered less conservative since Beta has a lighter tail
than the DZ ; for small k (see Additional file 1).

Second approach presupposes that the distribution
of k-mers of pseudo-ranks is described by a certain
copula C. Parameters of copula C are fitted for each
window, the null distribution is obtained by integra-
tion of the ! statistics over copula C (see Additional
file 1 for details). However, classical families of copu-
las (Gaussian, t-copula, Archimedean) are not suited to
model multidimensional k-mers with asymmetric dimen-
sional dependencies, a copulas mixture approach is
more adequate [28]. Then, the mixture approach suffers
from huge dimensionality — obtained solutions are only
locally optimal, dependent on a mixture fitting starting
point.

In either approach, k-mers with p-value less than 0.01
(suggested frequency of pathogenic CNVs) are selected as
markers. Results presented in this paper originate from
the first, Beta fit, approach.

Selected markers are lined up on the considered seg-
mentation. We sieve out segments without any markers
inside and sort segments that remain according to the
density of coverage by markers (best scoring segments
are most densely covered). We call the score assigned
to reported segments density score in the sequel, as it



Sykulski et al. Journal of Clinical Bioinformatics 2013, 3:12
http://www.jclinbioinformatics.com/content/3/1/12

corresponds to the percent of the segment covered by
markers.

Polymorphic regions filtering

Outlier statistic based method returns markers of rare
CNVs, but also of some segments in highly polymorphic
regions, where background distribution strongly diverges
from the null distribution. Thus, from the set of out-
standing segments covered by markers, we sieve out those
corresponding to the non—pathogenic polymorphisms. To
this aim we construct a so called polymorphic profile as
follows.

The segmentation is mapped into probes, i.e. to each
probe we assign the value of the mean logratio in the seg-
ment containing it. The signal is considered as not—noisy
if its absolute value exceeds 0.07. This corresponds to
log2ratio = 0.24 which is a conservative (high) threshold
for aberration detection. We count the number of signals
above this threshold in each column i and if there are more
than three (1% of 366 samples) we set the i-th coordinate
in the polymorphic profile to 1, otherwise it is set to 0.

Next, we scan the profile vector and identify all k-mers
(k = 7) of consecutive ones. At the end, the set of outlier
k-mers from the previous step is intersected with the full
set of k-mers, that indicates the polymorphism. Outlier k-
mers that overlap with polymorphic profile are excluded
from further analysis.

Validation

To validate segments selected as rare CNVs according to
our density score we automate the process of a manual
validation of segments based on UCSC [29], i.e. the pro-
tocol by which geneticians usually act. Lastly, we compare
resulting sets of segments with the set produced manually
by geneticists from IMC.

Manual validation by geneticists involves inspecting
reported CNVs segments, overlaying them on UCSC
tracks. This purposes to filter out known polymorphisms
and, by interrogation of all known syndrome regions, to
try to narrow down the segment set to only those clinically
relevant. This step is followed by FISH or PCR confirma-
tion of the CNVs existence in patient’s DNA [30,31].

For the automated process we decided to focus on
three main databases storing the information related to
genomic variations and diseases resulting from it: ISCA,
DGV and GAD.

ISCA is a group of clinical cytogenetics laboratories
committed to improve the quality of patients care related
to clinical genetic testing using aCGH [20]. ISCA database
contain very high quality copy number data (i.e. deletions
and duplications) from clinical laboratories. Currently,
ISCA stores 1.7 Gb of CNVs data classified as pathogenic.

The objective of the DGV is to provide a compre-
hensive summary of structural variation in the human
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genome identified in healthy control samples [22]. Cur-
rently DGV is used to justify the rarity of identi-
fied rearrangement. However, this approach is criticized
because DGV contain many false positives (e.g. small
aberrations detected by poor—resolution technology are
considered to be larger) [7]. On the other hand, its
content is not representative for analysis of specific
group of patients. Therefore, our procedure for poly-
morphisms filtering is based on in house database,
as suggested [7].

The GAD is an archive of human genetic association
studies of complex diseases and disorders allowing for
rapid identification of medically relevant polymorphisms
from the large volume of polymorphism data [21].

In our validation approach, we investigate the correla-
tion of marker coverage density score for segments with
the contents of described databases. For medically rele-
vant CN'Vs, we expect insignificant intersection with DGV
and a non—empty intersection with ISCA and/or GAD.

Ethical approval

Informed consents approved by the Institutional Review
Board of the Bioethics Committee at the IMC (12/2007)
were obtained in all cases.

Results and discussion

Adequacy of density score

A central challenge in CNV-disease association stud-
ies is to characterize the pathogenicity of rare CNV
events [7]. It is usually done by a manual inspection
of several UCSC tracks [29]. In our approach, we have
implemented this process as follows. For each predicted
segment (achieving predefined level of density score),
we calculate the number of genomic variants in healthy
individuals (according to DGV), which have a signifi-
cant intersection with our segment. Moreover, we scan
the GAD database for genetic associations and ISCA
database for pathogenic events located in this region, see
Figure 2.

To illustrate the adequacy of our density score, we
calculated the enrichment curve with respect to seg-
ments already confirmed as pathogenic or reported as
those of uncertain significance that needs further analy-
sis (see Figure 3(a)). The diagonal depicts the enrichment
curve in the case of a random selection of segments,
the dashed line is the ideal enrichment curve and
the red line is the enrichment curve for our density
score.

Figure 3(b) presents the Venn diagram for five sub-
sets of the set of ca. 3000 segments having absolute
mean logratio value greater than 0.1. Inside this set we
consider: set of all reported segments, set of segments
predicted by us (having density score above 50%), set of
segments containing GAD genes, set of segments with
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Figure 2 Rare CNVs detected by our method in 366 samples. Figure shows the chromosmal location of all segments reported by experts (red),
segments predicted by our method (yellow) as well as pathogenic CNVs reported in ISCA (purple) and genes from GAD (blue).

significant intersection with DGV (at least 3 cases) and
the set of segments classified as polymorphic according
to our filtering procedure based on polymorphic pro-
file. Observe that the filtering method eliminated 98%
of segments with DGV content, and more importantly
1808 other segments, which are also polymorphic but
not reported in DGV. The sensitivity of our method for
rare CN'Vs detection is 96% (only 4 segments reported by
experts are missed from all 102 reported but non-DGV
segments) and the specificity is about 94% (as false posi-
tives we classify 10 predicted but non-reported segments

having significant DGV intersection). The most interest-
ing findings that require further analysis (e.g. FISH) are
18 segments predicted by our method containing GAD
regions.

Robust analysis via rankings

The wave bias, as depicted on Figure 1, seems to be
platform—-independent and occurs in any high—resolution
DNA hybridization studies. The usefulness of the wave
smoothing methods proposed thus far can be more prob
lematic than beneficial, e.g. method proposed by van de
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Figure 3 Evaluation of CNVs detection results. (a) The enrichment curve for a density score with respect to the segments already reported as

rare CNVs (Predicted), confirmed as pathogenic or uncertain (Reported),

segments significantly overlapping with DGV (DGV), segments with GAD genes (GAD), and segments selected as polymorphisms according to
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Table 1 Selected predicted best scored CNVs confirmed later as pathogenic changes

Case Gain/loss Cytoband Size (Mb) Oligo nr. Score ISCA GAD Diagnosis

1 Del 1g43q44 33 166 100% 24 — Mental retardation
2 Del 3913.2g13.31 45 154 99% 4 2 Autism

3 Del Xp22.12 1.6 100 95% 53 1 Mental retardation
4 Del 17921.31 0.3 84 96% 23 3 Mental retardation
5 Del 5014.3q15 54 596 95% 5 — Mental retardation
6 Del Xg22.1922.3 52 167 91% 51 2 Mental retardation
7 Del 2937.2q37.3 6.3 736 88% 19 2 Mental retardation
8 Del 15913.3q14 8 873 87% 2 2 Mental retardation

Wiel, et al needs the calibration profiles containing clear
wave patterns and is applicable only to tumor data (not
genomic disorders) [19]. Therefore, some authors pre-
fer to simply remove samples with extreme wave factors
from further analysis then to risk the loss of a significant
segment.

Another very important but still neglected issue con-
cerns the burden caused by a specific technician, so called
experimenter’s bias. In one of our preliminary studies, for
the considered cohort of patients, we obtained perfect dis-
crimination (based on only few disrupted probes) between
groups of samples analyzed by a specific technician (data
not shown).

Discovery and validation of rare CNVs
In a cohort of 366 patients, our method identified 168
potentially pathogenic duplications and deletions that met
coverage density score 50%. From this set, 100 changes
have been reported (i.e. already confirmed (by FISH) as
real pathogenic and non—pathogenic changes or selected
as changes of unknown significance for further analy-
sis). Most pathogenic CNVs correspond to deletions, as
there are many fewer pathogenic events associated with
amplifications.

Table 1 presents selected best scoring CNVs pre-
dicted by us and confirmed (by karotype or FISH) to

be pathogenic, while Table 2 lists predicted best scor-
ing CNVs of uknown significance, which are currently
being investigated using FISH or PCR. Figure 4 shows
the distribution of segments’ lengths: rare CNVs pre-
dicted by us are much longer than common CNVs or
false positive segments, which is consistent with previous
analysis [32].

Conclusions
Many recent studies have emphasized the role of
CNVs in the etiology of many human diseases, with
rare variants being particularly important [33]. Cur-
rent methods for detection of CNVs in individual
samples are not capable to infer such information,
while most approaches for multi sample analysis
focus on frequent CNVs present in tumor samples.
We propose the efficient solution filling this gap that
can be used for accurate detection of rare CNVs and
has potential use in clinical diagnostics. Since our pro-
cedure produces a set of markers for rare CNVs, it may
be efficiently used to filter a segmentation produced by
any other segmentation algorithm, and help with iden-
tification of segments corresponding to rare pathogenic
polymorphisms.

The ongoing study on a group of 366 individuals con-
firmed large part of our predictions (see previous section,
Tables 1 and 2).

Table 2 Selected predicted best scored variants of unkown significance

Case Gain/loss Cytoband Size (Mb) Oligo nr. Score ISCA Diagnosis

1 Del 8q22.2 0.25 56 100% 5 Autism

2 Del 5035.3 0.7 27 93% 6 Mental retardation
3 Dup 3p26.3 0.33 21 90% 10 Mental retardation
4 Dup 12q24.32 04 9 88% 7 Mental retardation
5 Dup 4q28.2 0.12 77 87% 6 Mental retardation
6 Dup 3p22.3 12 30 83% 4 Autism

7 Dup 60253 0.9 17 82% 4 Mental retardation
8 Del 4921.23921.3 0.95 22 81% 4 Autism
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Figure 4 The distribution of lengths of detected CNVs. Green bars correspond to the distribution of lengths of all detected segments. Blue bars
indicate to the frequencies of common CNVs or false positive segments, while red bars represent segments predicted as rare CNVs.
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Moreover, the validation of the proposed segments
scoring indicates the significant enrichment of high
scoring segments in disease genes from GAD database
and impoverishment in benign CNVs present in DGV
database. Futhermore, the extensive intersection of
rearrangements detected by us with data stored in
ISCA indicates the potential pathogenic changes in our
segments.

The presented method is robust in the sense of sen-
sitivity to outliers coming from spurious probes, or any
singular outliers of other type, when comparing to seg-
mentation on each sample separately (DNACopy algo-
rithm was used in this study). Last but not least, it is
also resistant to waviness. The DNA—copy segmentation
algorithm used in the first stage of our method can be
replaced by any other procedure, and more importantly
it can be also skipped at all. In that case, we can clus-
ter the significance markers found during the second
phase along the genome to obtain longer segments. This
idea leads to multi-sample segmentation algorithm that
can be highly efficient and we plan to exploit it in the
future.

Additional file

Additional file 1: Supplementary information. This is an extended
section Methods/Outstanding CNVs detection from Sykulski et al. “Multiple
samples aCGH analysis for rare CNVs detection”, where the statistics mean
Lq distance to other rank vectors is analyzed in greater detail. The statistics
is used to select outlier rows from logratio data matrix resulting from
stacking ACGH (Array Comparative Genomic Hybridization) results from
many patients. The robust statistical framework applied in our method
enables to eliminate the in uence of widespread technical artifact termed
‘waves'.
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