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Abstract

Background: Like all other neurodegenerative diseases, Alzheimer’s disease (AD) remains a very challenging and
difficult problem for diagnosis and therapy. For many years, only historical, behavioral and psychiatric measures
have been available to AD cases. Recently, a definitive diagnostic framework, using biomarkers and imaging, has
been proposed. In this paper, we propose a promising diagnostic methodology for the framework.

Methods: In a previous paper, we developed an efficient SVM (Support Vector Machine) based method, which we
have now applied to discover important biomarkers and target networks which provide strategies for AD therapy.

Results: The methodology selects a number of blood-based biomarkers (fewer than 10% of initial numbers on
three AD datasets from NCBI), and the results are statistically verified by cross-validation. The resulting SVM is a
classifier of AD vs. normal subjects. We construct target networks of AD based on MI (mutual information). In
addition, a hierarchical clustering is applied on the initial data and clustered genes are visualized in a heatmap. The
proposed method also performs gender analysis by classifying subjects based on gender.

Conclusions: Unlike other traditional statistical analyses, our method uses a machine learning-based algorithm. Our
method selects a small set of important biomarkers for AD, differentiates noisy (irrelevant) from relevant biomarkers
and also provides the target networks of the selected biomarkers, which will be useful for diagnosis and
therapeutic design. Finally, based on the gender analysis, we observe that gender could play a role in AD diagnosis.
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Background
Overview
Analysis of Alzheimer’s disease (AD) has been a challenging
problem for diagnosis and therapy. Currently, a definitive
clinical diagnosis can be obtained only by historical,
behavioral and psychiatric measures, and only when
the patient’s condition has sufficiently deteriorated [1]. In
[2], a dynamic model was proposed for AD diagnosis and
has led to several studies of biomarker-based analysis.
However, in order to validate the model, continuous
studies of biomarkers are necessary to identify critical
time points when changes or permutations of biomarkers
occur [3]. The specificity and sensitivity of AD diagnosis
remain in doubt due to the lack of comparisons of AD
with other neurodegenerative disease [4]. In addition, the
standards and guidelines for blood-sample biomarkers are
still in the process of development [4]. The current
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methods for biomarker collection are also problematic,
due to the need for expensive instrumentation and the
invasiveness of the procedures [5]. Recently, Zhang et al.
integrated three modalities--MRI, FDG-PET, and CSF
biomarker--into a Multi-Kernel SVM to classify AD vs.
normal samples [6].

NIH guidelines
In the past few years, the technologies for both biomarker
analysis and imaging have provided promising contributions
to definitive diagnoses of AD. In 2011, the NIH National
Institute on Aging and the Alzheimer’s Association also
established new guidelines to allow use of biomarkers and
imaging for diagnoses [1]. Since the announcement from
NIH, research to identify and compare biomarkers has
been thriving.

SVM
High-dimensional pattern classifiers such as SVMs
(Support Vector Machines) are adapted to contribute
classifications. In [7-9], biomarker selections were
performed by SVM-RFE, a feature (biomarker) extraction
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Figure 1 Distributions of original pair-wise MI values and permuted pair-wise MI values.
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method, by reclusively eliminating features based on the
validation accuracy of SVM [10]. During the selection
process, the least useful feature is iteratively removed from
the original subset. However, a group of weak features can
still construct a strong classifier [10]. Once a feature is
removed from the original subset, it cannot be evaluated
by different combinations of the remaining features. Thus,
the SVM-RFE approach usually suffers from selection of a
sub-optimal subset since the classification ability of features
should be evaluated by subsets instead of by individuals.

AMFES
In [11], we first proposed an efficient algorithm, AMFES
(Adaptive Multiple FEatues Selection), to select important
biomarkers for cancers. Based on that initial success, this
paper reports the extension of previous results on the
datasets provided by Maes et al. in an attempt to discover
important biomarkers for AD from the blood-based
samples [12]. Unlike traditional statistical analyses,
AMFES is an SVM-based methodology, which can
select a much smaller subset of important biomarkers.
In addition, AMFES applies an adaptive method which
enables selection of a globally optimal subset of important
Table 1 Descriptions of 3 datasets: GSE4226, GSE4227, and G

GSE4226

Number of Biomarkers 9600

Type of Biomarkers RNAs

Number of Samples 28 (14 AD vs. 14 Normal)
biomarkers compared to SVM-RFE. AMFES is particularly
useful for differentiating noisy biomarkers from the relevant
ones when interferences between biomarkers exist. Our
results are supported by a high ROC/AUC (Receiver
Operating Characteristic/Area Under Curve) value
when we apply a cross-validation verification. Thus,
AMFES should play an important role in the classification
framework of multi-modalities proposed by Zhang et al.
in [6]. In this paper, we shall develop the details of AMFES
for blood-based biomarkers.
The target networks of AD with statistical dependencies

(mutual information) are constructed by these selected
biomarkers. The resulting AD target network is charac-
terized as a signature of the disease, and will enable a
more detailed diagnosis. In addition, the MI (Mutual
Information) values of AD subjects are found to be
lower than those of normal subjects. Based on our method
and results, a promising framework for definitive diagnosis
is proposed.
The organization of this paper is as follows: The Methods

section describes AMFES [11], as well as the computations
of mutual information between two biomarkers and the
construction of the target networks. In the Results section,
SE4229

GSE4227 GSE4229

9600 9600

RNAs RNAs

34(14 AD vs. 18 normal) 40(18 AD vs. 22 normal)



Table 2 Results of selected subsets of genes

GES4226 GSE4227 GSE4229

Number of Biomarkers Selected 74 52 395
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we describe the PBMC (Peripheral Blood Mononuclear
Cells) datasets of sporadic AD: GSE4226, GSE4227, and
GSE4229 [12-14]. In addition, we describe the biomarkers
and target networks of AD selected according to our
approach on these 3 datasets.
Methods
AMFES
Selecting a small subset out of hundreds and thousands of
features is always a challenging task due to the COD (Curse
of Dimensionality) problem for microarray datasets. To
tackle this problem, we use a gene selection methodology,
AMFES, to select an optimal subset of genes by training
an SVM with subsets of genes generated adaptively [11].
AMFES is developed based on two fundamental processes,
ranking and selection.
The gene ranking process contains several stages. In

the first stage, all genes are ranked by their ranking
scores in a descending order. Then, in the next stage,
only the top half of the ranked genes are ranked again,
while the bottom half holds the current order in the
subsequent stage. The same iteration repeats recursively
until only three genes remain to be ranked again to
complete one ranking process.
Assume at a given ranking stage, there are k genes

indexed from 1 to k. To rank these k genes, we follow 4
steps below. (I) We first generate m independent subsets
S1… Sm. Each subset Si, i = 1, 2… m, has j genes which
are selected randomly and independently from the k
genes (II) Let Ci be the SVM classifier that is trained on
each subset of genes, i = 1, 2… m. For each gene of k
genes, we compute the ranking score θm(g) of the gene
g, as equation (1) below [11]. (III) We use the average
weight of gene g, given by the summation of weights of g
in m subsets divided by the number of subsets for which
g is randomly selected. The weighti(g) is then defined as
Table 3 Results of analysis of MI matrices

Mean value of MI Standard deviation of MI Num o

GSE4226_normal 0.0245 0.0793 4636

GSE4226_AD 0.0225 0.0804 4382

GSE4227_normal 0.0086 0.0487 2086

GSE4227_AD 0.0076 0.0466 1972

GSE4229_normal 0.000095 0.0045 100275

GSE4229_AD 0.000081 0.0045 97987
the change in the objective function due to g as equation
(2) [11] and the m value is obtained when θm satisfies
the equation (3) in [11]. This increases the robustness
to represent the true classifying ability of gene g. (IV)
The k genes are then ranked in descending order by their
ranking scores.

θm gð Þ ¼

Xm
i¼1

I g ∈Sif gweighti gð Þ
Xm
i−1

I g ∈Sif g

ð1Þ

where I is an indicator function, such that Iproposition = 1 if
the proposition is true; otherwise, Iproposition = 0. In other
words, if gene g is randomly selected for the subset Si, it is
denoted as gϵSi and Iproposition = 1.
We denote the objective function of Ci as obji(v1, v2, …,v5)

where v1, v2… vs are support vectors of Ci. The weighti(g)
is then defined as the change in the objective function due
to g, i.e., [6-8].

weighti gð Þ ¼ obji v1; v2;…vsð Þ−obji v gð Þ
1 ; v gð Þ

2 ;…; v gð Þ
3

� ���� ���
ð2Þ

Note that if v is a vector, v(g) is the vector obtained by
dropping gene g from v. Let θm be a vector comprising
the ranking scores derived from the m gene subsets
generated thus far and θm-1 be the vector at the previous
stage. Them value is determined when θm satisfies equation
(3) by adding a gene to an empty subset once a time.

θm−1 − θmk k2
θm−1k k2 < 0:01 ð3Þ

where ||θ|| is understood as the Euclidean norm of
vector θ.
The ranking process is performed by ranking both

artificial and original features together. The use of artificial
features has been demonstrated as a useful tool to distin-
guish the relevant features from the irrelevant ones, as in
[15-17]. When a set of genes is given, we generate artificial
f positive values Num of negative values Min value Max value

840 −0.0037 1.4451

1094 −0.0032 1.7946

618 −0.0029 1.5557

732 −0.0035 1.4860

55750 −0.0041 1.1717

58038 −0.0036 1.5503



Figure 2 ROC curve of selected genes of GSE4226, 74 genes.
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genes and rank them together with original ones. After
finishing the ranking of the set, we assign a gene-index
to each original gene by the proportion of artificial ones
that are ranked above it, where the gene-index is a real
numerical value between 0 and 1. Then, we generate a few
subset candidates from which the optimal subset is chosen.
Figure 3 Histograms of pairwise MI values of normal and AD samples
Each subset has a subset value, pi, and it contains original
genes whose indices are smaller than or equal to pi [11].
We train an SVM on every subset, and compute its valid-
ation accuracy v(pi). We stop at the first pk at which its
validation accuracy is better than baseline (i.e., the case in
which all features are involved in training [11]).
of GSE4226.



Figure 4 Histograms of pairwise MI values of normal and AD samples of GSE4227.
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When starting to apply AMFES, we first divide all
samples into either learning samples or testing samples.
Then, we randomly extract r training-validation pairs
from the learning samples according to the heuristic rule

r ¼ max 5; intð Þ 500
nþ0:5

� �
, where n is the number of
Figure 5 Histograms of pairwise MI values of normal and AD samples
learning samples in the dataset. The heuristic ratio and
rule are chosen based on experience of the balance of time
consumption and performance. The ranking and selection
processes from previous sections correspond to one
training-validation pair. To increase the reliability of
validation, we generate r pairs to find the optimal subset.
of GSE4229.
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We calculate the validation accuracy of all pairs and
the average accuracy, av(pi). Then, we perform the subset
search as explained in the previous section to find the
optimal pi value, denoted as p*. However, p* is a derived
value and does not belong to a unique subset. Thus, we
have to adapt all training samples and repeat the entire
process in order to find a unique subset.
We generate artificial genes and rank them together

with the original genes. Finally, we select the original
genes whose indices are smaller than or equal to the p*
derived previously as the subset of genes we select for
the dataset [11].

Mutual information
To treat a complex disease or injury such as AD, an optimal
approach is to discover important biomarkers for which
we can find certain treatments. These biomarkers form a
certain dependency network as a framework for diagnosis
and therapy [18]. We call such a network a target network
of these biomarkers [11].
Mutual information has been used to measure the

dependency between two random variables. Assume the
two random variables X and Y are continuous numbers.
The mutual information is defined as [19]:

I X;Yð Þ ¼ ∬ f x; yð Þ log f x; yð Þ
f xð Þf yð Þ

� �
dxdy ð7Þ

where f(x,y) denotes the joint probability distribution, and
f(x) and f(y) denote the marginal probability distributions
Figure 6 A target network of top ranked 15 genes selected by AMFES
of X and Y. By using the Gaussian kernel estimation, the
f(x, y),f(x) and f(y) can be further represented as [20]:

f x; yð Þ ¼ 1
M

∑
2πh2

e−
1

2h2
x−xuð Þ2þ y−y2uð Þð Þ ð8Þ

f xð Þ ¼ 1
M

∑
1ffiffiffiffiffiffiffiffiffiffi
2πh2

p e
1

2h2
x−xuð Þ2 ð9Þ

f yð Þ ¼ 1
M

∑
1ffiffiffiffiffiffiffiffiffiffi
2πh2

p e
1

2h2
y−yuð Þ2 ð10Þ

where M represents the number of samples for both X
and Y, u is index of samples u = 1,2,…M, and h is a
parameter controlling the width of the kernels. Thus,
the mutual information I(X,Y) can then be represented as:

I X;Yð Þ ¼ 1
M

∑
i
log

M∑ie
− 1
2h2

xw−xuð Þ2þ yw−yuð Þ2ð Þ
∑je

− 1
2h2

xw−xuð Þ2∑je
− 1
2h2

yw−yuð Þ2 ð11Þ

where both w, u are indices of samples w,u = 1,2,…M.
Computation of pairwise genes of a microarray dataset

usually involves a nested loops calculation which takes a
dramatic amount of time. Assume a dataset has N genes
and each gene has M samples. To calculate the pairwise
mutual information values, the computation usually first
finds the kernel distance between any two samples for a
given gene. Then, the same process goes through every
for GSE4226.
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pair of genes in the dataset. In order to be computationally
efficient, two improvements are applied [21]. The first one
is to calculate the marginal probability of each gene in
advance and use it repeatedly during the process [21,22].
The second improvement is to move the summation of
each sample pair for a given gene to the most outer
for-loop rather than inside a nested for-loop for every
pairwise gene. As a result, the kernel distance between
two samples is only calculated twice instead N times,
thereby saving considerable computational time. LNO
(Loops Nest Optimization) which changes the order of
nested loops is a common time-saving technique in
computer science field [23].
Target network
In our approach, a constructed target network is repre-
sented by an undirected graph in which nodes represent
genes in the system and edges represent the dependency
between gene pairs [18]. For each gene pair, we use MI
(Mutual Information) to measure the dependency between
them and represent the weight of linkages. Assuming that
the graph contains N nodes (genes), there should be
N� N−1ð Þ

2 pairwise MI values for all genetic pairs. An adja-
cency matrix of N ×N elements is used to hold MI values
of all the linkages in the graph. The adjacency matrix
can be visualized as a heatmap. In addition, hierarchical
clustering is often used to help verify the dependency
between genes. In this paper, we adapt the Matlab
clustergram() function, which uses Euclidean distance
as the default method to calculate pairwise distance to
visualize the heatmap after clustering.
Figure 7 A target network of 74 genes selected by AMFES for GSE422
In order to remove irrelevant linkages in a graph, it
is necessary to choose a suitable MI threshold which
determines the topology of networks formed. The value of
0 or 1 is assigned to a matrix element based on the
chosen MI threshold. References in [24] and [25]
describe a method to determine a suitable threshold using
permutations of MI. The procedure involves permuting
MI values of gene pairs and then choosing the largest MI
to be the threshold. Using this procedure for 30 repetitions
of the permutation on the MI matrix, we choose 0.06
as the threshold. The distributions of the original and
permuted MI values are shown in Figure 1.
Results
Microarray datasets descriptions
The gene expressions used for this paper are based
on PBMC (Peripheral Blood Mononuclear Cells)
blood-based biomarkers [12-14]. Subject AD and normal
elderly patients all took the MMSE (Mini-Mental
State Examination). Those with chronic metabolic
conditions such as diabetes, rheumatoid arthritis and
other chronic illnesses or familial AD problems are
not included in the analysis [12-14]. Fields such as
immunology, transplant immunology, vaccine development
often use PBMCs.
GSE4226
AMFES is used to analyze the gene expressions from the
BMC (Blood Mononuclear Cell) of AD patients [12].
The dataset contains 9600 features from 14 normal elderly
control samples (7 females and 7 male) and 14 AD patient
6.



Figure 8 A target network of 52 genes selected by AMFES for GSE4227.
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samples (7 females and 7 males). The average age of
the patients is 79 ± 5 years with 11 ± 4 years of formal
educational background. The platform of the dataset
is GPL1211 and gene expressions are extracted by
using the technology of NIA (National Institution on
Aging) Human MGC (Mammalian Genome Collection)
cDNA microarray. The raw normalized dataset can be
found in Additional file 1.
Figure 9 Clustergram of first 15 genes selected by AMFES for GSE422
GSE4227
The dataset GSE4227 was extracted from BMC and under
the same GPL1211 platform as GSE4226. It was used to
identify the genes with expressions associated with GSTM3
(Glutathione S-Transferase Mu 3) [14]. The dataset
contains 9600 features and 34 samples (16 sporadic AD
samples and 18 normal elderly control samples). The raw
normalized dataset can be found in Additional file 2.
6.
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GSE4229
This dataset contains new subjects and some subjects
from GSE4226 and GSE4227 [13]. The blood samples
were extracted by phlebotomy in an EDTA vacutainer.
The dataset also contains 9600 features and 40 samples
(18 AD samples and 22 normal elderly control samples).
The platform is the same as GSE4226 and GES4227. The
raw normalized dataset can be found in Additional file 3.
Results of AMFES
Table 1 contains the descriptions of the three datasets,
GSE 4226, 4227 and 4229. AMFES selected 74 genes for
GSE4226, 52 for GSE4227, and 395 for GSE4229 and
the selected results are shown in Table 2. The complete
lists of the 74, 52 and 395 selected genes can be found
in Additional file 4: GSE4226_74_Biomakrers.xlsx,
Additional file 5: GSE4227_52_Biomakrers.xlsx and
Additional file 6: GSE4229_395_Biomakrers.xlsx. The
statistical results of MI values are shown in Table 3.
ROC/AUC analysis
To show the classification ability of selected genes, we
calculate the AUC (Area Under the Curve) and draw the
ROC (Receiver Operating Characteristic) curves for the
expressions of 74 genes by using the LIBSVM Matlab
ROC tool, as shown in Figure 2 [26]. The ROC/AUC
value is verified based on cross-validation [26]. The AUC
metric represents the probability that the classifier
constructed by the selected genes has higher performance
than the classifier constructed using randomly chosen
genes. Thus, the closeness of the AUC value to the
value of 1 indicates the importance of the selected
Figure 10 Clustergram of 74 genes selected by AMFES for GSE4226.
genes. The ROC/AUC value (0.95918) therefore supports
the significance of verification for the selected genes.

Mutual information analysis
The pair-wise MI values of selected genes of AD or
normal samples are calculated separately. The histo-
grams of MI values of GSE4226 are shown in Figure 3,
where the black bars represent MI values of normal
samples, and the grey bars are for AD samples. The
histograms for GSE4227 and GSE4229 are displayed in
Figures 4 and 5, respectively. The pair-wise MI files of AD
and normal samples are shown in Additional file 7:
GSE4226 AD MI.xlsx, Additional file 8: GSE4226-
Normal MI.xlsx, Additional file 9: GSE4227-AD MI.
xlsx, Additional file 10: GSE4227-Normal MI.xlsx,
Additional file 11: GSE4229-AD MI.xlsx and Additional
file 12: GSE4229-Normal MI.xlsx. The analysis results
are shown in Table 3. Interestingly, the mean MI value
of the GSE4226 AD samples is larger than those of the
other datasets. In addition, the ratio of the number of
positive MI values to the negative MI values for
GSE4226 AD samples is also larger than the ratio for
other datasets.

Clustergram/Target network examples
The clustergram function of the genes selected from the
GSE4226 dataset is described as an example to support
the target networks constructed. Only the top ranked 15
genes are used for the analysis shown in Figure 6. In fact,
any number of genes can be selected to follow the same
procedure. The complete target network constructed by
74 biomarkers for GSE4226 and 52 biomarkers for
GSE4227 are shown in Figures 7 and 8, respectively.



Figure 11 Clustergram of 52 genes selected by AMFES for GSE4227.

Table 5 The selected female genes of GSE4226

Number Gene symbols

1 Unknown ID

2 SKIP

3 Unknown ID

4 MGC15504

5 DKFZP434J046

6 FLJ20591

7 ELA3B

8 CADPS

9 FLJ10707

10 FLJ14639
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Because of the limited visibility of the figure constructed
by a large number of biomarkers for GSE4229, we did not
include it in the manuscript. For the target networks
constructed, we observed that only a few of the interac-
tions between biomarkers are reliable after trimming by a
permutation test. This observation can help focus on a
smaller set of the more important interactions.
As the heatmap generated for the 15 genes (Figure 9)

shows, if a few genes share high pairwise MI values with a
specific gene, they tend to cluster together as indicated by
rectangles and have fewer “hops” (number of connections
between a pair of gene) than other genes (Figure 6). For
example, PEX5 shares similar MI values with DNPEP,
CCBP2, LCMT1, BCAP29, LRRC1 and NDUFA6, which
are clustered together in Figure 9. From the graphical view
of the target network, these genes have direct connections
to PEX5, as shown in Figure 6. On the other hand, a gene
such as PLEKHA1 which is two hops away from PEX5
displays an obvious color difference in the MI clustergram.
The clustered heatmaps of 74 genes for GSE4226 and of
Table 4 The comparisons of female genes and male gene
selected by AMFES

Datasets Number of features
selected for female

Number of features
selected for male

GSE4226 19 9

GSE4227 12 13

GSE4229 36 13
52 genes for GSE4227 are shown in Figures 10 and 11,
respectively.

Gender analysis
AMFES is used to analyze the data by gender for all three
datasets and the results are shown in Table 4. The complete
11 ZDHHC1

12 Unknown ID

13 LOXL4

14 PTPN4

15 STK25

16 CNP

17 TERF21P

18 TAF12

19 BAP29



Table 6 The selected male genes of GSE4226

Number Gene symbols

1 RNASE1

2 FLJ22729

3 FLJ12571

4 IDH2

5 HCS

6 E1B-AP5

7 PIGO

8 ZDHHC3

9 H4FJ
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lists of selected female and male genes for GSE4226 are
shown in Tables 5 and 6 as examples, respectively. The
complete lists of selected female and male genes for
GSE4227 and GSE4229 are shown in Additional file 13,
Additional file 14, Additional file 15, and Additional file 16.
Interestingly, from all the results there are no overlapped
biomarkers between female and male genes.

Discussion
In this paper, the GSE 4226 dataset is studied in more
detail because the number of female and male subjects
is equal, thereby avoiding the biased sampling problem
of the datasets (i.e., when the number of samples is
unbalanced for two classes). Traditionally, statistical soft-
ware such as SAM (Significance Analysis of Microarrays)
Figure 12 A complete process to improve diagnosis of AD by AMFES
[27], PAM (Prediction Analysis for Microarrays) [28] or
ANOVA (Analysis of Variance) are used for analyses of
biomarkers [12-14]. Compared to the results in [12-14],
AMFES selects a much smaller, yet important, set of
biomarkers which are supported by the cross-validation.
In [7,8,29], the researches were performed based on
SVM-RFE for AD biomarker analyses. Here, AMFES can
appreciably improve the performance of biomarker
analysis. In our current research, we are extending the
framework of Zhang et al. [6] by AMFES, and this work
will be reported shortly. Finally, interestingly for the gen-
der analysis, when we compare results for female AD sub-
jects with those for male AD subjects, there are no
overlapping genes, indicating that the important bio-
markers may differ according to gender.
Conclusions
Based on above results, we have proposed a method-
ology for improving the diagnosis of AD, which is sum-
marized in the Figure 12. As shown in Figure 12, after
labeling the AD vs. normal samples, AMFES can select a
small subset of important biomarkers by evaluating them
on an SVM. For a new patient, the proposed method
can select the biomarkers accordingly and construct the
corresponding target networks to provide a definitive
diagnosis. As in [11], the target networks can be used
for further development of a synergistic strategy to
improve the therapy of AD in the future.
.
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Additional files

Additional file 1: GSE4226_RawData_Normalized.xlsx. An MS Office
Excel file which contains normalized raw data of GSE4226 samples.

Additional file 2: GSE4227_RawData_Normalized.xlsx. An MS Office
Excel file which contains normalized raw data of GSE4227 samples.

Additional file 3: GSE4229_RawData_Normalized.xlsx. An MS Office
Excel file which contains normalized raw data of GSE4229 samples.

Additional file 4: GSE4226_74_Biomarkers.xlsx. An MS Office Excel
file which contains a list of gene symbols of 74 biomarkers of GSE4226
samples.

Additional file 5: GSE4227_52_Biomarkers.xlsx. An MS Office Excel
file which contains a list of gene symbols of 52 biomarkers of GSE4227
samples.

Additional file 6: GSE4229_395_Biomarkers.xlsx. An MS Office Excel
file which contains a list of gene symbols of 395 biomarkers of GSE4229
samples.

Additional file 7: GSE4226 AD MI.xlsx. An MS Office Excel file which
contains a matrix of the pairwise MI values of 74 biomarkers of AD
samples.

Additional file 8: GSE4226 Normal MI.xlsx. An MS Office Excel file
which contains a matrix of the pairwise MI values of 74 biomarkers of
normal samples.

Additional file 9: GSE4227 AD MI.xlsx. An MS Office Excel file which
contains a matrix of the pairwise MI values of 52 biomarkers of AD
samples.

Additional file 10: GSE4227 Normal MI.xlsx. An MS Office Excel file
which contains a matrix of the pairwise MI values of 52 biomarkers of
normal samples.

Additional file 11: GSE4229 AD MI.xlsx. An MS Office Excel file which
contains a matrix of the pairwise MI values of 395 biomarkers of AD
samples.

Additional file 12: GSE4229 Normal MI.xlsx. An MS Office Excel file
which contains a matrix of the pairwise MI values of 395 biomarkers of
normal samples.

Additional file 13: GSE4227 Female Gene List.xlsx. An MS Office
Excel file which contains a complete list of gene symbols of female
genes selected for GSE4227.

Additional file 14: GSE4227 Male Gene List.xlsx. An MS Office Excel
file which contains a complete list of gene symbols of male genes
selected for GSE4227.

Additional file 15: GSE4229 Female Gene List.xlsx. An MS Office
Excel file which contains a complete list of gene symbols of female
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