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Abstract

Direct assessment of allelic phase for DNA and RNA features of diploid genomes has been challenging for Sanger
sequencing, due to its allele-conflating base-calling signal. Massively parallel sequencing technologies are based on
the generation of a continuous copy of a single strand sequence segments, thus preserving the allelic relation
between the features of the original molecules. We have performed a transcriptome-wide search for co-occurrence
of variant nucleotides and exon-intron boundaries positioned within the length of a single sequencing read. Analysis of
75 human transcriptomes from retinal pigment epithelia (RPE), glioblastoma, low-grade brain tumor, breast cancer and
colon cancer, have identified an association between the synonymous variant rs1140458 and an early-terminated NPCT
isoform lacking exons 19-25. Higher proportion of molecules bearing the variant nucleotide (versus the reference)
incorporates the intron (P <0.0001), which turns the last codon of exon 18 into a stop codon. The significance is highest
in RPE cells (P=388x 10"?). NPC] protein is involved in the control of the cholesterol trafficking. NPCT mutations lead,
in an autosomal recessive manner, to the neurological disorder Niemann-Pick syndrome type C (NP-C), and, ablation of
NPCT causes age-progressive retinal degeneration in mice and drosophila. The vast majority of the NP-C causative
variants consist of missense/nonsense substitutions, small indels, and, intronic splice variants. Rs1140458 is a common

cholesterol-implicated cellular phenotype.

exonic synonymous substitution that has never been linked to alternative splicing or pathogenicity. Our analysis
suggests that rs1140458 may affect the levels of the functional NPC1 protein, and to contribute to some of the

Introduction

Autosomal recessive mutations in the NPCI gene ac-
count for 95% of the cases with Niemann-Pick syndrome
type C (NP-C, MIM #607623), a cholesterol storage and
glycosphingolipid trafficking deficiency, with wide variabil-
ity in the age of onset and in the number and severity of
manifestations [1,2]. The patients manifest progressive
neurological symptoms including cerebellar atrophy, loss
of Purkinje neurons, and neurofibrillary tangles, which
could eventually cause ataxia, loss of speech capabilities,
psychiatric problems and learning difficulties [1,3]. Despite
the clear autosomal mode of inheritance, in up to 30% of
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the patients, only one deleterious NPCI allele has been
identified [4-7]. In addition, ablation of NPCI expression
is shown to lead to age-progressive retinal degeneration in
mice and drosophila [8,9].

The NPCI gene is located on chromosome 18q11.2 and
is composed of twenty-five exons. According to the Hu-
man Gene Database (http://www.hgmd.cf.ac.uk/ac/index.
php, [7]) 345 pathogenic NPCI1 mutations have been de-
scribed, consisting of missense and nonsense substitutions
(69%), small insertions and deletions affecting the open
reading frame (20%), intron-positioned splice variants (8%),
and gross alterations (3%) (Additional file 1: Table S1).
Rs1140458 is a common synonymous substitution (N931N,
chr18:21119777 C > T, NM_000271.4) in NPC1I, with allele
frequency close to 0.5. It is located three nucleotides from
the exon boundary inside of exon 18 and has not previ-
ously been associated with pathogenicity. Herein, we
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describe a link between the rs1140458 and a prematurely
terminated NPCI isoform lacking exons 19-25, discov-
ered through a novel approach for assessment of co-
occurrence of RNA features.

Materials and methods

Human RNA-seq transcriptomes

We analyzed 75 transcriptomes derived from different
human tissues and cell lines as follows: 10 in-house RPE
primary cell lines from the eyes of organ donors, and 65
RNA-seq datasets downloaded from online sources: 7
glioblastoma tumor tissues and 8 low-grade brain tumor
cell lines, 25 breast cancer tumor tissues and 6 breast
cancer cell lines, 9 colon cancer tissues, and 10 colon
cancer cell lines. The web-sources used were ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/) [10], and Cancer
Genomic Hub (https://cghub.ucsc.edu/) [11]. The choice
of samples is based on relevance to the cholesterol/glyco-
sphingolipid metabolism, and availability of concordantly
processed RNA-seq datasets from -different tissues for as-
sessment of tissue-specificity of our observation.

RNA-seq analysis pipeline

All the RNA-seq datasets were aligned using Tophat 2
version 2.0.11 [12]. Variants calls were obtained using
Mpileup utility of SAMTools (http://samtools.source
forge.net/mpileup.shtml) [13]. Base Alignment Quality
was used to score the variant calls. Consensus calling
was one using bcftools. The variant calls were quality fil-
tered as described previously [14], and annotated using
SeattleSeq Annotation Tools version 8.01, dbSNP build
138 [15]. Parallel run of the 10 RPE samples through
Varscan (http://varscan.sourceforge.net/) produced 100%
identical calls on chr18:21119777 C>T in NPCI. Tran-
script abundance level of each sample was quantified
using Cufflinks version 2.1.1 [16] as we have previously
described [14].

Assessment for variants associated with intron-containing
RNA-molecules

To identify potential splice-modulating variants, we have
performed a transcriptome-wide search for nucleotides
that selectively reside in unspliced molecules, using
aligned RNA-seq datasets. To do this we applied SNPlice -
a Python-based computational approach developed in
our lab (https://code.google.com/p/snplice/, v.1.7.1) [17].
SNPlice finds sequencing reads spanning SNP loci and
nearby exon-intron boundaries, and classifies them based
on the nucleotide at the SNP site and the presence or ab-
sence of the canonical exon-exon splice junction [17].
Following analysis of raw reads using Tophat, and Sam-
tools, the resulting aligned reads (.bam format), junctions
(.bed format), and variants (.vcf format) are read directly
by SNPlice. Four categories of reads are counted at a
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given SNP—junction pair, and the statistical significance
of non-independence of the SNP and splicing is assessed
using Fisher-exact test: Nyuz.. indicates reads containing
the variant base and exon-exon junction, Ny, z.;, - variant
base and exon-intron boundary, Nzgr.., — reference base
and exon-exon junction, and Nzgr,;, — reference base and
exon-intron boundary. High Ny,r.; with low Nzgr,; indi-
cate that the variant nucleotide is preferentially observed
in intron-retaining molecules, and, may have splice-
modulating potential. In addition, log odds-ratio (log,,
LOD) of intron-retaining reads among variant bearing
reads versus intron-retaining reads among all reads is
computed [17]:

log Nvarei/ (Nvaree+ Nvarei)
? (Nvarei+ Nrerei)/ (Nvaree+ Nvareit+ Nreree+ Nrerei)

The log odds-ratio increases when the intronic reads
are enriched in the variant allele. A pooled ratio is used
in the denominator since the number of reference in-
tronic reads is often zero. For analyses across samples,
SNPlice will accept multiple reads, junctions, and variant
files, taking the semantic union of the input reads, junc-
tions, and variants.

Allele-specific Sanger sequencing

To illustrate the co-occurrence of variant nucleotide and
exon-intron boundary, and the coherence with the align-
ment display through IGV, we designed and performed
allele-specific reverse transcription PCR on c¢cDNA de-
rived from heterozygote samples from the same RPE pri-
mary cell lines, followed by Sanger sequencing. Three
primers were designed: a common forward exonic pri-
mer positioned further inside the exon from rs1140458,
and two reverse primers hybridizing in the downstream
exon or intron, respectively (Additional file 2: Table S2,
and Additional file 3: Figure S1A). The PCR products
were gel-purified and subjected to bi-directional Sanger
sequencing using the forward and reverse primers used
for the amplification.

Results and discussion

The distribution of the categories of reads across the 75
samples is presented in Additional file 4: Table S3. In
the nine heterozygote samples of the RPE subset, the
variant nucleotide of rs1140458 was found more often
on reads remaining unspliced at the exon 18 boundary,
with seven of the samples’ read counts meeting a p-value
threshold of 5% (p-values between 0.04 and 0.009).
When reads from all RPE samples, including the homo-
zygote ones, were pooled, the p-value of the observed
counts was 3.9 x 10712 (See Additional file 4: Table S3).
In the rs1140458 positive samples, between 8 and 21%
of the sequencing reads harboring the variant nucleotide
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retained the intron, while this percent was on average
1.7 for the reads carrying the reference nucleotide. Out
of all intron-retaining molecules, overall 87.7% carried
the variant nucleotide.

Next, we assessed the three other assemblies of non-
neural cell lines and tissues: glioma/glioblastoma, breast
cancer, and colon cancer (See Additional file 4: Table S3).
In contrast to the neuroepithelial cells, when examined
individually, fewer heterozygote samples presented with
significantly higher number of intron-retaining reads har-
boring the variant nucleotide. For example, none of the
heterozygote samples in the glioma/glioblastoma subset
reached significance in the read distribution at p <0.05.
Nevertheless, a tendency was clearly seen, and the propor-
tion of the intron-retaining reads with variant nucleotide
was significant for the pooled reads in both cell lines
(p <0.0001), and tissues (p = 0.03). Similarly, few individ-
ual samples reached p <0.05 for the read distribution in
the breast and colon cancer subsets: one from colon can-
cer tissue, and two from the colon and breast cancer cell
lines each. A total of 4 more heterozygote samples showed
a tendency (p <0.1). Again, when the pooled number of
reads across all samples was analyzed, the difference in the
distribution was significant (p <0.0001) for all 4 datasets.
The proportion of variant-bearing reads that retained the
intron (out of all variant bearing reads) ranged between
3 and 8.3% as compared to between 0.2 and 1.6% for the
intron-retaining reference reads. Of note, the overall
proportion of the intron-retaining reads bearing the
variant (out of all intron-retaining reads) in the non-
neuroepithelial samples was the same as the one ob-
served in the neuroepithelial subset — 87.6%. To assess if
the observed strong association in the RPE cells is re-
lated to overall increased alternative splicing, we ana-
lyzed the variety and the abundance of transcripts across
the studied samples. Higher expression fraction of com-
plete length NPCI transcripts (over all NPCI tran-
scripts) was estimated in the RPE samples, as compared
to the cancer samples (0.88 vs 0.55, p <0.001).

All the samples were examined at the rs1140458 locus
using Integrative Genomics Viewer (IGV) [18], and the
correspondence to the SNPlice assessment was visually
confirmed (Figure 1 top). Furthermore, Cufflinks assembly
(.gtf) of the local sequencing reads in samples bearing the
variant showed the presence of an isoform retaining the
intron 18 of the NPC1I gene (Figure 1 bottom).

We performed allele-specific PCR followed by Sanger
sequencing on two heterozygote samples from the RPE
primary cell lines; resulting chromatograms are shown
on Additional file 3: Figure S1. The chromatograms were
specifically examined for relative signal (peak) of the
variant versus the reference nucleotide in the spliced
and unspliced amplicons. Consistent with the assessment,
Sanger sequencing of the region flanking rs1140458
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showed that the molecules bearing the variant nucleotide
predominate in the PCR product amplifying the exon-
intron boundary. In contrast, the amplicon of the canonic-
ally spliced exon-exon region showed an equal proportion
of the variant and the reference allele (See Additional
file 3: Figure S1).

The potential of rs1140458 to modulate the splicing
was further assessed through three independent splice
modeling tools: SplicePort, Skippy and SpliceAid [19-21].
SplicePort estimated that the variant diminishes the donor
strength in comparison to the reference (False Discovery
Rate, FDR <0.01). Skippy predicted loss of one exonic
splice enhancer, and SpliceAid predicted the loss of the
binding site for YB1 [22]. Overall, all three tools predicted
a role for the variant in splice modulation.

Incorporation of the intronic sequence downstream of
exon 18 leads to replacement of the third base of codon
932, which alters it from tyrosine-encoding to a stop
codon, thus generating a prematurely terminated NPCI
isoform lacking the seven downstream exons. Such an
isoform has been previously described (uc010xba, UCSC
genes). To our knowledge, this is the first study to link it
to the presence of the variant nucleotide of the upstream
located rs1140458.

The highest proportion of intron-retaining reads in an
individual sample is 21% (RPE Sample #5, see Additional
file 4: Table S3). Based on that, most of the samples
homozygote for rs1140458 are expected to retain more
than half of the active NPCI. If, however, rs1140458 is
in compound heterozygosity with a strong deleterious
NPCI allele, the level of the functional protein may de-
crease below 40%. Currently, it is unclear whether this
level of NPC1 activity is sufficient for proper cellular
functioning, or if it would lead to a cellular phenotype
resulting from aberrant cholesterol trafficking [23].
Nevertheless, the study illustrates an important example
of partial mutational effect — a phenomenon of particu-
lar interest for studying of incomplete penetrance of
genetic changes.

Rs1140458 is positioned three nucleotides inside exon
18, thus residing on the border of a sequence tradition-
ally annotated as “splice-site”, which consists of the two
immediate nucleotides on each side of the exon-intron
boundary. However, only a small percentage of exonic
splice-site nucleotides have been experimentally verified
to affect splicing. Our results suggest that the motif
encompassing rs1140458 may be important for recogniz-
ing the donor splice sequence by the components of the
splicing machinery.

The interesting observation in this study is the strong
effect of the rs1140458 variant observed specifically in
the retinal cells. This effect was present, but weaker in the
compared cancer datasets, known to have increased gen-
eral splice deregulation, as also shown by their increased
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Figure 1 IGV visualization of the read alignment and assembly of rs1140458 region for three illustrative RPE samples. Top. Sequencing
reads with variant (A, in green) and reference nucleotide at the SNP position in the proximity of an exon-intron boundary are shown. Variant-
harboring reads often continue in the intron, indicating association with potential junction alteration. Bottom. Cufflinks assembly (.gtf) showing
the presence of an isoform retaining the intron 18 of the NPCT gene (ENSTO0000540608 represents spliced isoform, and ENST0000269228 represents

fraction of incomplete NPCI transcripts [24]. This may in-
dicate cell-specific splicing control in the neuroepithelial
cells, making this variant selectively essential for tissue-
specific phenotype formation. Given the important role of
the cholesterol for the retinal physiology [8,9,25], rs1140458
variant in NPCI is worth studying for potential implica-
tion in cholesterol-related retinal pathology.

Despite the clear tendency for the variant to reside in
intron-retaining reads in non-neuronal tissue types, the

significance of the read distribution there was lower,
mainly due to the overall lower proportion of intron-
retaining reads (See Additional file 4: Table S3). This ob-
servation shows that even in cells where intron retention
occurs less frequently, it is still selective for the variant-
bearing molecules, which is also demonstrated by the
similar proportion of variant intron-retaining reads (out
of all intron-retaining reads) across the entire set of
samples.
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In summary, we demonstrate that substantial propor-
tion of the RNA molecules bearing the variant nucleo-
tide of rs1140458 in the NPC1 gene remain unspliced at
the nearby exon-intron boundary and incorporate an
early stop codon; the effect being stronger in RPE cells.
The implication of rs1140458 in NP-C phenotype vari-
ation, or in the cholesterol metabolism in retinal cells, is
a subject for further investigation. However, our study il-
lustrates an important mechanism of allele-specific spli-
cing modulation, and reveals partial penetrance of the
effect of a genetic variant in a cell-specific mode — a
phenomenon of crucial importance for understanding
complex genotype-phenotype relationships and multi-
gene variance effects.

Additional files

Additional file 1: Table S1. Types of Reported NPCT Pathogenic
Mutations (Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/
ac/index.php).

Additional file 2: Table S2. Primer sequences and amplicon sizes for
AS-RT-PCR amplification of the exon-exon and exon-intron regions near
rs1140458 in NPCI.

Additional file 3: Figure S1. A. Schematic presentation of the AS-RT-PCR
designed to detect co-allelic variant nucleotide and exon-intron boundary.
For each allele-specific PCR, three primers were designed: a common
forward exonic primer to amplify the SNV locus, and two reverse primers
hybridizing in the downstream exon or intron, respectively. The example
shows a variant nucleotide (A, in green) which, if splice modulating, is
expected to over-dominate the reference allele in the PCR-amplicon
containing the exon-intron junction. B. Sanger sequencing chromatograms
of the allele specific amplification of the region flanking SNP rs1140458 near
3'SS of in the gene NPC1: the amplicon of the canonically spliced exon-
exon region (top), shows an equal proportion of the variant and the
reference allele. In contrast, in the intron-retaining molecules (second from
the top) predominate the alleles with the variant nucleotide (indicated with
an arrow). The results were consistent with the reverse primer (bottom two
chromatograms).

Additional file 4: Table S3. Distribution of the four categories of
sequencing reads (VARei, VARee, REFei, REFee) across the 75
transcriptomes in the region of rs1140458 by cell type, with P-values, and
LOD scores. All the P-values lower than 0.2 are displayed (bold). “% VAR
unspliced” shows the proportion of reads bearing the variant nucleotide
and retaining the intron, out of all VAR harboring reads. “% REF
unspliced” indicates the proportion of reads bearing the wild type
nucleotide and retaining the intron, out of all wild type reads. “%VAR (of
all unspliced)” indicates the proportion of variant bearing reads among all
the intron-retaining reads. The blue rows in the table present homozygote
wild type genotype (in regards to rs1140458), and the green rows represent
homozygote variant genotype.
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