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Abstract

Background: The immune response to viral infection is a temporal process, represented by a dynamic and
complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at
capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will
be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the
network structure transitions in response to pathogen stimuli.

Results: We applied the Time Varying Dynamic Bayesian Network (TV-DBN) method for reconstructing the gene
regulatory interactions based on time series gene expression data for the mouse C57BL/6J inbred strain after
infection with influenza A HINT (PR8) virus. Initially, 3500 differentially expressed genes were clustered with the use
of k-means algorithm. Next, the successive in time GRNs were built over the expression profiles of cluster centroids.
Finally, the identified GRNs were examined with several topological metrics and available protein-protein and
protein-DNA interaction data, transcription factor and KEGG pathway data.

Conclusions: Our results elucidate the potential of TV-DBN approach in providing valuable insights into the
temporal rewiring of the lung transcriptome in response to HIN1 virus.
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Background

It is now well established that the study of biological com-
plexity has shifted from gene level to interaction networks
and this shift from components to associated interactions
has gained increasing interest in network biology. Gene
Regulatory Networks (GRNs) depict the functioning circui-
try in organisms at the gene level and represent an
abstract mapping of the more complicated biochemical
network which includes other components such as pro-
teins, metabolites, etc. Understanding GRNs can provide
new ideas for treating complex diseases and offer novel
candidate drug targets. A commonly accepted top-down
approach is to reverse engineer GRNs from experimental
data generated by microarray technology [1-5].
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Early computational approaches for inferring GRNs
from gene expression data employed classical methods.
Boolean network modeling considers the gene expression
to be in a binary state (either switched on or off), and dis-
play via a Boolean function the impact of other genes on a
specific target gene [6]. Nevertheless, the intermediate
levels of gene expression are neglected, thus resulting in
information loss. Moving forward, Bayesian networks (BN)
utilize probability calculus and graph theory and model
GRNs as directed acyclic graphs where the nodes repre-
sent genes and the edges between nodes represent regula-
tory interactions, based on the conditional dependencies
extracted from the data. Despite their ability to deal with
noisy input, they ignore the temporal dynamic aspects that
characterize GRN modeling [7]. To cope with that, the
Dynamic Bayesian Networks (DBN) evolved feedback
loops to incorporate the temporal aspects of regulatory
networks; however the computational cost for estimating
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the conditional dependencies remains high when the num-
ber of genes is large [8,9]. Also, linear additive regulation
models managed to identify certain linear relations in reg-
ulatory systems but failed to attribute the nonlinear
dynamics features [10].

Recently, several techniques have been developed for
the mathematical modeling of the dynamics of gene-gene
interactions from time series expression data, such as dif-
ferential equation based models [11-14], state space mod-
els [15,16], vector autoregressive (VAR) models [17,18]
and information theoretic models [19]. However, the
resulting network structures are static, with time-invar-
iant topology among the defined set of nodes. Therefore,
these network structures can be characterized ‘dynamic’
only in the sense that they model dynamical systems. It
still remains a challenging task to model in a quantitative
manner the dynamic character of biological networks,
which in turn appear, based on the latest studies, not to
be static networks with invariant topology but are rather
context-dependent and systematically rewired over time.
These time or context dependent functional circuitries
are referred as time varying biological networks [20-26].

Our study focuses on depicting the temporal dynamics
of the lung transcriptome after perturbation of the biologi-
cal system by an infection with influenza A virus. Intensive
research has already been performed in analyzing the viral
virulence factors and genetic host factors contributing to
disease development and outcome [27-31]. The innate
immune response system is the first line of defense against
pathogens and more fast acting in comparison to adaptive
immune response. However, little knowledge exists about
the influence of specific genes or gene interactions that
contribute to the susceptibility or resistance to influenza
infections. Our effort was to provide the directed time
evolving network structures underlying the innate immune
regulatory mechanism, with temporal resolution up to
every single time point based on the time series measure-
ments of the nodal state. Our goal was to provide evidence
that the immune response mechanism undergoes signifi-
cant ‘tuning’ during the first 5 days after pathogen invasion
and present these shifts through serial snapshots, each one
depicting the evolutionary steps of gene interplay. In our
approach we applied the Time Varying Dynamic Bayesian
Networks (TV-DBNs) on a time series microarray dataset
obtained from the lungs of C57BL/6] mice infected with a
mouse-adapted influenza A (H1N1) virus. It has already
been shown, that time varying network approaches
like TV-DBNs [26] have provided valuable insights in
depicting the transitional changes in yeast cell cycle or stu-
dies like Song et al. [32] that successfully exhibited the
stages of developmental cycle of D. melanogaster. The
TV-DBNs offer the ability to overcome limitations of
other approaches like the structure learning algorithms for
Dynamic Bayesian networks [7], that depict dynamic
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systems with fixed node dependencies or other approaches
like [33], where a static network is constructed as a start
point and then time dependencies are detected.

One important aspect of our research was to bring
together clustering and inferring networks from time
series data. From the computational point of view, the
number of estimated relationships in the network is signif-
icantly reduced by defining relationships on cluster level
[34-36], thus network inference becomes more feasible.
Also, recent studies have characterized biological networks
as modular, with modules defined as groups of genes, pro-
teins or other molecules participating in common subcel-
lular processes [37,38]. Based on that concept, clusters of
co-regulated genes can also be considered as abstractions
of modules, since the underlying idea is that co-regulated
genes are usually functionally associated. In our approach,
we aim at defining relationships between clusters, rather
than gene-to-gene relationships, which in turn can be
regarded as special cases of clusters (i.e. with each gene
defining its own cluster).

Summarizing, the present reverse engineering approach
consists of four steps: (1) data selection, (2) clustering for
obtaining centroids, (3) parameter tuning and generation
of Time Varying Dynamic Bayesian Networks based on
the time series experimental expression profiles of cluster
centroids and (4) evaluation of the resulting networks
with respect to topological measures as well as with avail-
able biological knowledge.

Methods

Data

C57BL/6] mice were infected with a mouse-adapted
influenza A virus (PR8), RNA was prepared from whole
lungs and processed for hybridization on Agilent 4 x 44
k arrays. Three replicates, from three individually
infected mice, were taken for each time point after infec-
tion (1, 2, 3, 4, 5 days) and from three mock-infected
mice (day 0) (Pommerenke C et al.: Global transcriptome
analysis in influenza-infected mouse lungs reveals the
kinetics of innate immune responses, infiltrating T cells,
and formation of tertiary lymphoid tissues, submitted).
All experiments in mice were approved by an external
committee and according to the national guidelines of
the animal welfare law in Germany ('Tierschutzgesetz in
der Fassung der Bekanntmachung vom 18. Mai 2006
(BGBI. I S. 1206, 1313), das zuletzt durch Artikel 20 des
Gesetzes vom 9. Dezember 2010 (BGBL. I S. 1934) geén-
dert worden ist.”). The protocol used in these experi-
ments has been reviewed by an ethics committee and
approved by the ‘Niedersdchsiches Landesamt fiir Ver-
braucherschutz und Lebensmittelsicherheit, Oldenburg,
Germany’, according to the German animal welfare law
(Permit Number: 33.9.42502-04-051/09). Preprocessing
steps of the raw data comprised background correction
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[39], quantile normalization, probe summarization, and
log2 transformation using the R environment and addi-
tional packages from Bioconductor [40].

Subsequently, we used the GEDI toolbox [41] in order
to identify the differentially expressed gene probes and
after applying t-test with p-value < 0.05 (FDR adjusted),
3500 genes were maintained. We examined our gene list
with the use of Database for Annotation, Visualization,
and Integrated Discovery (DAVID) functional annotation
tool [42] for over-represented biological process Gene
Ontology terms (results shown in Table 1).

Clustering

Clustering and gene network inference methods are
usually developed independently. However, it is widely
accepted that deep relationships exist between the two
and their implementation in a unified manner overcomes
the limitations posed by each method. A challenging task
in gene network reconstruction is that the number of
genes is so large; hence network modeling based on a
limited amount of data becomes too complex. The gen-
eral opinion is that the amount of data required for GRN
modeling increases approximately logarithmically with
the number of genes [43]. However, it is difficult to spe-
cify the experimental data requirements more precisely
since many more factors influence the network inference
performance. Also, the quality of an inferred model
depends on the quality of the given data; the number of
time points (in case of time series data), the observation
duration and the interval between subsequent measure-
ments might lead to less informative data and thus ham-
per a reliable GRN reconstruction. In order to overcome
the limitations posed by the large number of genes, some
types of dimensionality reduction of the network are
necessary. Based on the fact that genes with similar
expression profiles are considered to be co-regulated,

Table 1 GO enrichment analysis

GO Biological Process Term Percentage P-Value
(%)

GO:0002376:immune system process 7.5 745E-31

GO:0050896:response to stimulus 15.2 1.83E-11

GO:0009987:cellular process 48 1.22E-06

GO:0051704:multi-organism process 27 1.54E-06
GO:0016265:death 32 0.001708142
GO:004001 1:locomotion 23 0.005231518
GO:0008152:metabolic process 354 0.036706589
GO:0016043:cellular component 10 0.037186976

organization

GO:0032502:developmental process 14.2 0.061325344

Biological Process GO enrichment analysis of the 3500 genes included in our
dataset. The analysis was implemented with DAVID Bioinformatics Resources
functional annotation tool. 1429 out of the 3500 genes are not yet
characterized with regard to biological process GO terms.
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reconstructing networks at cluster level is a realistic and
statistically advantageous approach, since the dimensions
of the cluster-based networks become significantly lower.
From a system theoretic perspective, coarse graining
of expression profiles means removing redundant infor-
mation. Therefore, one reasonable approach is to group
genes into clusters by means of a clustering technique
and then use the cluster centroids or cluster representa-
tives as input for subsequent modeling [34]. Nevertheless,
it should be noted that clustering results are often char-
acterized as ambiguous, since they depend on the cluster-
ing method, the selection of distance metric and
initialization parameters. In our study, we chose to clus-
ter the temporal profiles with the use of k-means algo-
rithm due to its simplicity and fast speed in processing
large datasets. The clustering process was repeated more
than 100 times using random initialization, with Eucli-
dean metric as distance measure. We implemented the
Euclidean distance as a similarity measure, in order to
detect similar expression trends (positive linear correla-
tion) i.e. simultaneous up or down regulated expression
levels. From the biological perspective, it is considered
more important to identify the relative up/down regula-
tion of expression profiles than the amplitude absolute
expression changes [44]. Furthermore, the optimal num-
ber of clusters was appointed both by means of the Dunn
index [45] as well as by GO enrichment analysis. There-
fore, the obtained cluster centroids can be rightfully
employed as input in the TV-DBN algorithm.

In particular, we applied k-means clustering algorithm
at the data with the cluster number ranging between 10
and 80. We selected this range, so that the resulting
cluster number is both indicative enough of the size of
our dataset as well not so large, avoiding so over-fitting
that leads to poor predictive power. We employed Dunn
index, a performance measure used for comparing dif-
ferent clustering results, in order to check the range of
cluster number that gives dense and well separated clus-
ters. This index is defined as the ratio between the mini-
mal inter-cluster distance to maximal intra-cluster
distance. As intra-cluster distance the sum of all dis-
tances to their respective centroid was calculated, while
the inter-cluster distance was defined as the distance
between centroids. According to the internal criterion of
the index, clusters with high intra-cluster similarity and
low inter-cluster similarity are more desirable. The max-
imal Dunn index score values were observed between
19-36 clusters as can be seen in Figure 1. However, the
final number of clusters was estimated after examining
the clusters, assessed from the best clustering result in
terms of maximal Dunn index scores, with regard to
Gene Ontology biological process terms, so that the
obtained clusters are biologically sensible and function-
ally coherent. In detail, we analyzed our clusters, with
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Figure 1 Dunn Index results. Boxplot with Dunn Index results for k-means clustering. The x-axis represents the cluster number, while the y-axis
represents the Dunn’s cluster validity index scores. The experiment was repeated 100 times and the maximal Dunn Index score values were

the use of DAVID functional annotation tool at level 3,
for enriched GO terms, the percentage of genes related
to that term and the corresponding EASE score, which
is a modified Fisher Exact p-value and concluded that
35 clusters was the optimal number (the gene members
of every cluster are displayed in additional file 1). We
chose to check clusters at level-3 in order to avoid the
impact of the broadest terms or the most specific ones
on the enrichment analysis. It is worth mentioning that
the majority of our genes (1429 genes) are not yet fully
characterized by GO terms, thus our clusters leave
space for further exploration. Therefore, we character-
ized our clusters based on the rest genes, fully described
in terms of GO terms (additional file 2). We found that
13 clusters are characterized by terms associated to
immune response, whereas the rest are mainly involved
in metabolic process and system development.

Time Varying Dynamic Bayesian Network Modeling
A Time Varying Dynamic Bayesian Network (TV-DBN)
is a model of stochastic temporal processes based on
Bayesian networks [26]. It represents relations between
the state of a variable at one time point and the states
of a set of variables at previous time points.

Given a set of time series in the form of

X=X X)) e R

where t is a time in the timeseries, X' is a vector of the
values of p variables at time ¢, a TV-DBN models relations
as:

Xt =At _thl

where A®e R? *? is a matrix of coefficients that relate
the values at ¢-1 to those of time ¢. The non-zero ele-
ments of A' form the edge set of the network for time .

In our experiments, each cluster was a variable of the
model and its centroid gave the time series values. Thus,
the resulting networks relate the expression levels of all
clusters at previous time point to the expression levels of
each cluster at each time point. In order to calculate the
network structures, it is assumed that they are sparse and
vary smoothly across time; therefore successive networks
are likely to share common edges. The problem of esti-
mating the networks is decomposed into smaller, atomic
optimizations, one for each node i (i = 1...p) at each time
point t* (t* = 1..T):

A 1 T i "
Al =argmin 37w ()(xf - ATx 1)+ A AL I

1.
AL eRUxn
where A is a parameter for the £,-regularization term,
which controls the number of non-zero entries in the
estimated Af*, and hence the sparsity of the networks;

w™(t) is the weighting of an observation from time t
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when estimating the network at time ¢* and is defined
as:

Kp(t — tx)

V= S K- )

where:

t2
Ki(t) = exp(—, )

is a Gaussian RBF kernel function and / is the kernel
bandwidth. The above optimization is transformed
further by scaling the covariates and response variables
by

V(o)

ie. & « Jw*(t)xt and &'« Jw(e)at!

The optimization is then solved using the shooting
algorithm [46], which iteratively updates one entry of A;
while holding all other entries fixed. The kernel band-
width 7 affects the contribution of temporally distant
observations. A high value results in all observations con-
tributing equally to each time point, while a small value
narrows the effect to only the immediately previous time
point. For our experiments, we selected % so that the
weighting of observations 2 days away from each time
point is higher than exp(-1).

Ki(2) = exp(~ 7 ) > ep(~1)

The £;-regularization term A affects the sparsity of the
resulting networks and controls the tradeoff between
the data fitting and the model complexity. In order to
set the appropriate value to A, we employed the Baye-
sian Information Criterion (BIC) [32] and the largest
BIC score value was detected when A was set to 0.1. An
implementation of the estimation algorithm was created
in Python programming language, using the NumPy and
Scipy libraries.

Results and Discussion

The current study proposes a systems biology approach
to analyze the dynamic behavior of the lung transcrip-
tome to HIN1 infection from stimulus-response data
from perturbation experiments. This system can be
regarded as a specific stimulus-induced perturbed biolo-
gical system. In particular, we present an implementation
of Time Varying Dynamic Bayesian Networks on time
series gene expression data of murine C57BL/6] inbred
strain after infection with HIN1 (PR8) virus. Our reverse
engineering approach combines clustering techniques
and network inference methods, in order to map the
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dynamic gene regulatory kinships occurring at various
time points after infection, thus displaying the response
of the lung transcriptome after an environmental stimu-
lus. However, the low time resolution of data imposed
significant constraints in analysis and modeling. There-
fore, we permuted our analysis by defining the regulatory
effects on cluster level in order to achieve some kind of
dimensionality reduction. The resulting five TV-DBNS,
each one representing the GRN at a specific time point
(day p.i.), were evaluated with topological metrics as well
as with available interactome data. Also, we checked
whether known gene-to-gene relationships could be
retrieved from our cluster based approach.

Topological analysis of Regulatory Networks

The first goal in our analysis was to explore the topologi-
cal characteristics of the five TV-DBNs. Thus, we con-
ducted local topology analysis in order to identify hub or
bottleneck clusters/nodes that could serve as the key regu-
lators at every time point. For this purpose we used
Hubba server [47] and calculated several network topology
metrics such as degree (D), bottleneck (BN), edge perco-
lated component (EPC), Maximum Neighborhood Com-
ponent (MNC) and Density of Maximum Neighborhood
Component (DMNC). Also, we used the Cytoscape plu-
gins [48] for network analysis and measured the indegree,
outdegree and betweenness centrality metrics. Indegree is
the count of the number of interactions directed to the
node, and outdegree is the number of interactions that the
node directs to other nodes. Betweenness centrality mea-
sures on how many shortest paths a node, between other
nodes, occurs. It has been shown that metrics like the
aforementioned improve the identification of essential
nodes in networks. For example, betweenness centrality
correlates closely with essentiality, exposing critical nodes
that usually belong to the group of scaffold proteins or
proteins involved in crosstalk between signaling pathways
(called bottlenecks) [49]. This metric has also been pro-
posed in the new paradigm of network pharmacology as a
good feature for investigating potential drug targets [50].
The results are displayed in Table 2 where we detected the
‘top scorer’ clusters for every metric and for each TV-DBN
separately. With regard to betweenness centrality, the
majority of the clusters are related to immune response,
with the exception of clusters 20, 25, 33 which are related
with cell-cell adhesion, regulation of cellular process and
cellular macromolecule metabolic process. The scene is
repeated with regard to BN metric, where all top scorer
clusters are immune response related, with the cluster 20
as exception. Bottlenecks are network nodes with key con-
nector role in the network and have many ‘shortest paths’
going through them. The MNC metric displays similar
results with betweenness centrality, with cluster O detected
by MNC but not by betweenness centrality. Also, the EDC
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Table 2 Top Scorer Clusters

Time Point (day p.i.)
Topological Metric 1(day p.i.) 2(day p.i.) 3(day p.i.) 4(day p.i.) 5(day p.i.)
Rank 1 2 3 4 5 17 2 3 4 5 1T 2 3 4 5 17 2 3 4 5 17 2 3 4 5
Hubba MNC 17 18 24 15 0 17 18 15 24 25 17 25 15 18 24 17 25 15 24 18 25 24 15 17 18
Hubba EPC 17 18 24 15 20 17 24 15 18 25 17 25 15 24 18 17 25 15 24 18 25 15 24 18 17
Hubba DMNC o 10 4 6 7 11 14 20 32 0 2 11 12 22 31 3 0 4 10 7 0 11 22 28 31
Hubba Degree 17 18 24 15 0 17 18 15 24 25 17 15 25 18 24 17 25 15 18 24 25 24 15 18 17
Hubba BN 17 18 15 - - 17 15 - - - 18 17 15 24 - 17 18 15 24 - 18 24 15 17 20
Indegree Mmoo 7 9 2 11 14 9 32 17 10 11 32 8 9 10 11 24 23 32 10 11 14 23 9
Outdegree 17 18 24 15 3 17 18 15 24 25 17 15 25 18 24 17 25 15 24 18 25 15 24 18 17

Betweenness Centrality 17 18 15 24 33 17 18 15 20 25

17 18 29 15 25 17 25 18 23 15 18 17 25 15 23

Clusters were evaluated in every time point with several topological metrics as defined in Hubba analyzer. Also, the indegree, outdegree and betweenness
centrality scores were calculated with the use of Cytoscape plugins. We display the top 5 clusters (with descending rank order) at every time point with the
highest scores in every metric, with the exception of BN metric where only few clusters had score > 0.

metric has similar results with MNC and betweenness
centrality with few variations, especially in the ranking of
the top scorer clusters. Interesting results can also been
extracted from the out- and in-degree scores. All top
scorer outdegree clusters can be considered as the key
‘regulators’ whereas the top indegree clusters as the signifi-
cantly ‘regulatee’ clusters. As seen, the majority of outde-
gree clusters are immune response related in terms of
KEGG pathways [51] (Table 3), but one can observe that
at day 1 post infection (p.i.) cluster 3 (GO: cellular macro-
molecule metabolic process) appears as significant regula-
tor and then vanishes from the highest rank positions.
Also, clusters 17 and 18 lose their central role especially at
day 4 p.i. where clusters like 25 (GO: system development)
are recruited. With respect to indegree metric, the major-
ity of clusters displayed similar scores with the top 5 pre-
sented clusters, whereas the outdegree top 5 clusters had
significant score value differences with the rest clusters.
We also plot the histogram of indegree and outdegree
(averaged across time) for the time-varying networks in
Figure 2. The outdegrees seem to follow a scale free distri-
bution, which means that few clusters (regulators) regulate
a lot of clusters, whereas the indegree distribution is very
different from that of the outdegree and indicates that
most clusters are controlled by a few clusters. The average
indegree score per cluster centroid node is 3.23, which is
indicative of the underlying model complexity. This value
could be regarded as high if gene-gene relationships were
considered, but the presented approach is based on cluster
centroid expression profiles, which in turn represent the
expression trend of sets of genes and therefore the inde-
gree term should be interpreted from a different perspec-
tive. In Figure 3, we display an indicative example of the
outdegree and indegree distribution of clusters with differ-
ent sized nodes at day 3 p.i. The directed interactions dis-
play the snapshot of the regulatory relationships among
the gene clusters at the specific time point. It is evident

that few clusters have high outdegree scores, while the
majority of clusters have similar scores with respect
to indegree metric (the highest scores are presented in
Table 2). These findings are well consistent, on gene level,
with the biological observations that most genes are con-
trolled only by a few regulators.

In Figure 4, two different statistics, network size and
average local clustering coefficient, of the reversed engi-
neered cluster-based regulatory networks are plotted as a
function of the five time phases. Network size, defined as
the number of edges, depicts the overall connectedness of
the network, while the average local clustering coefficient,
as defined by [52], measures the average connectedness of
the neighborhood local to each node. Both statistics have
been normalized to the range between 0[1] for comparison
reasons. It is apparent that the network size and the aver-
age local clustering coefficient display completely different
trajectories during the defense response against the virus.
On one hand, the network size is continually increasing,
displaying peak value at day 4 p.i. and then slightly drops.
On the other hand, the average local clustering coefficients
of the TV-DBNs drop sharply after day 1 p.i. and stay low
until the fifth day after infection. One possible explanation
is that the clusters of co-expressed genes have a more
fixed and specific role at the beginning of the battle against
the pathogen and therefore interact with fewer clusters;
however, the genes show an expanded functionality reper-
toire in the next critical days in order to serve the needs
for response against the virus. A further hypothesis is that
in interactome exist few key modules/clusters (hubs) that
initiate most of the other modules to be activated in the
beginning of response, and this feature is lost at the late
time phases, where the ‘hub-ness’ identity is diffused in
more modules apart from the key ones. After all, the viral
load develops gradually during the first days of infection,
displaying a peak on day 2 p.i., which might be the critical
threshold for the onset of immune response.
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Table 3 KEGG Pathway analysis

Outdegree/Betweenness Centrality

Cluster KEGG pathway Percentage P-value
3 no pathway
15 B cell receptor signaling pathway 11.5 8.00E-03
17 RIG-I-like receptor signaling pathway 211 6.30E-06
Cytosolic DNA-sensing pathway 15.8 5.30E-04
Toll-like receptor signaling pathway 10.5 6.70E-02
18 Natural killer cell mediated cytotoxicity 16.7 2.60E-03
Graft-versus-host disease 11.1 4.00E-02
Allograft rejection 11.1 4.00E-02
20 drug metabolism 10.8 1.30E-03
23 Jak-STAT signaling pathway 6.0 9.60E-03
Lysosome 4.8 2.80E-02
Cell adhesion molecules (CAMs) 48 5.30E-02
24 Cytokine-cytokine receptor interaction 227 4.50E-05
Chemokine signaling pathway 18.2 5.90E-04
NOD-like receptor signaling pathway 136 1.70E-03
Cytosolic DNA-sensing pathway 9.1 5.60E-02
Hematopoietic cell lineage 9.1 8.50E-02
Toll-like receptor signaling pathway 9.1 9.90E-02
29 Proteasome 6.3 1.00E-03
Apoptosis 48 540E-02
Toll-like receptor signaling pathway 4.8 6.80E-02
33 Aldosterone-regulated sodium reabsorption 34 7.40E-03
Indegree
Cluster KEGG pathway Percentage P-value
7 DNA replication 9.7 4.60E-09
Mismatch repair 56 9.40E-05
8 Apoptosis 32 1.40E-02
p53 signaling pathway 24 6.00E-02
9 Chemokine signaling pathway 89 8.80E-03
Jak-STAT signaling pathway 6.7 5.20E-02
10 Antigen processing and presentation 87 2.40E-05
Allograft rejection 7.2 7.20E-04
Endocytosis 87 1.00E-03
Viral myocarditis 58 5.90E-03
11 Complement and coagulation cascades 8.2 3.10E-05
Cytokine-cytokine receptor interaction 96 1.70E-03
14 Natural killer cell mediated cytotoxicity 135 5.00E-08
T cell receptor signaling pathway 85 8.70E-04
Primary immunodeficiency 54 5.70E-03
Cell adhesion molecules (CAMs) 8.1 2.80E-03
Leukocyte transendothelial migration 6.8 6.80E-03
Cytokine-cytokine receptor interaction 8.1 1.90E-02
Cell adhesion molecules (CAMs) 38 1.70E-02
Cytokine-cytokine receptor interaction 8.1 1.90E-02
Cell adhesion molecules (CAMs) 38 1.70E-02
22 DNA replication 34 2.30E-03
Cytokine-cytokine receptor interaction 52 3.80E-02
23 Jak-STAT signaling pathway 6.0 9.60E-03

Cell adhesion molecules (CAMs) 48 5.80E-02
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Table 3 KEGG Pathway analysis (Continued)

24 Cytokine-cytokine receptor interaction 227 5.40E-05
Chemokine signaling pathway 182 5.90E-04
NOD-like receptor signaling pathway 136 1.70E-03

32 Cytokine-cytokine receptor interaction 196 2.00E-09
NOD-like receptor signaling pathway 89 5.30E-05
Toll-like receptor signaling pathway 89 1.30E-04

All top scorer clusters, with regard to indegree, outdegree and betweenness centrality metrics, were checked for enriched KEGG pathways.

Interactome analysis with Protein-Protein and Protein-
DNA Interaction data

An additional aspect in our analysis was to explore the
cluster interactome with respect to other types of data
such as protein-protein interactions (PPIs) and protein-
DNA interactions and display the ability of TV-DBN
approach in monitoring the dynamic presence or absence
of these interactions over the time course. For this pur-
pose, we downloaded the mouse datasets from InnateDB
database [53]. We selected InnateDB because it is a
highly curated database that integrates PPI and protein-
DNA data from various databases such as DIP, MINT,
IntAct, BioGRID and BIND and provides a thorough
curation system process for genes/proteins related to
innate immune system. In our dataset of a total of 3500
genes, 492 such interaction groups (consisting of more
than two genes/proteins) with 381 unique Entrez gene
ids were detected (additional file 3). A small fraction (72)
of these interaction groups was identified within the

members of the clusters, while the rest was shared
between clusters. It is apparent in Figure 5 that the traced
PPIs and protein-DNA interactions increased abruptly
after day 1 p.i. with the peak value at day 4 p.i., probably
due to critical viral load development and delayed
immune response. This observation is highly correlated
with the increase in the network size of the derived TV-
DBNs during time evolution, since the interactivity
between nodes becomes stronger. It is worth mentioning
that the majority of interactions (ranging between 57-
69%) detected at each TV-DBN are involved in immune
response related pathways like chemokine/cytokines and
their receptors, interferon-regulation and interferon-
response, TLR signaling pathway, RIG-I-like receptor sig-
naling pathway and others. Despite the limitation posed
by the small amount of available PPI and protein-DNA
data in our dataset, it is evident that immune response
mechanism undergoes significant restructuring the first
days after viral invasion and the TV-DBN succeeded in
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(a)

network and the corresponding cluster number.

Figure 3 Network Graph Structures. Network graph structures of the resulting TV-DBNs. Two indicative networks with different sized nodes
from time point 3 are displayed, in terms of (a) outdegree score and (b) indegree score. Each node represents the time (t) of the respective

identifying such immune related interactions between
different cluster centroid nodes. In Table 4, we list many
known PPI and protein-DNA interactions and the precise
time point of their occurrence. These observations eluci-
date the ability of TV-DBNs to provide further hypoth-
eses about the time snapshots that protein-protein and
protein-DNA interactions take place.

Furthermore, we accumulated transcription factor
(TF) data from the TFCat database [54], a highly
curated catalogue containing proven as well as candi-
date TFs. In our dataset 104 TFs were identified; 26 of
them being TF candidates (data shown in additional
file 4). We found that 26% of those TFs are located in
hub clusters, e.g. 17, 18, 29 and 33 with high rank in
the outdegree metric and contain also three TFs
related to immune response such as Irf7 in cluster 17,
Irfl in cluster 29 and Bmil in cluster 33. A representa-
tive example is cluster 17 that includes in addition to
Irf7 many other interferon-induced genes like Ifitl,
Ifit2, Ifit3, Ifi44 and interacts bidirectional (in all time
points) with cluster 9, which encompasses a great pro-
portion of interferon-induced genes like Ifi205, Tgtp,

Igtp, Irgm, Ifihl, Isg20. This observation is consistent
with the established role of Irf7 as an important pro-
tective host response during infection. Irf7 induces the
a- and b- interferons, which, in turn, regulate the
expression of the interferon-induced genes [55].
Another example is cluster 32 which includes A#f3 and
regulates, in all time shifts except for day 1, cluster 18
which contains Ifng. Other studies have shown that
Atf3 is recruited to transactivate the Ifug promoter
during early Thl differentiation [56].

Pathway gene-gene interaction dynamics

Our networks explicitly depict the cluster inter-relation-
ships at every time serial snapshot. The underlying con-
cept of our method is to reconstruct networks that
represent the regulatory effect of a co-expressed gene
set A (regulator) over another set B of co-expressed
genes (regulatees) at a specific time point. On gene
level, we expect to find the regulators of a gene, belong-
ing to cluster B, in the gene pool of cluster A. Thus,
moving forward in our analysis we checked whether
TV-DBN approach may recover known gene-to-gene
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Table 4 Timeline of PPI/Protein-DNA interactions
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Table 4 Timeline of PPI/Protein-DNA interactions
(Continued)

° Gzmb Hopx

° ° ° ° Irf7 Ifna4

° ° ° ° Ncorl Cxcl9

° ° ° ° 1170 Myd88

Each line in the table corresponds to one PPl or protein-DNA interaction. The
bullets indicate the exact day (A: day 1 p.i, B: day 2 p.i, C: day 3 p.i, D: day 4
p.i., E: day 5 p.i.) that the corresponding interaction is present in the resulting
network.

and Isgl15 (cluster 17), between Ddx58 (cluster 10) and
Trim25 (cluster 32), between Irf7 (cluster 17) and Ifna2
(cluster 21), Ifna4 (cluster 34), Ifnab (cluster 19), Ifnal2
(cluster 21), Ifubl1 (cluster 32) and between Mapk8
(cluster 27) and Mapk9 (cluster 12) with Tnuf (cluster
10). Nevertheless, one should bear in mind that the time
spacing between gene expression measurements, as has
been recorded in our present data set, is fairly large in
comparison to the real time at which these interactions
occur. Therefore, the current cluster-based networks
provide only a very coarse representation of the regula-
tory effects which could be refined by higher time
sampling.

Another important example is the Toll-like receptor
signaling pathway. Toll-like receptors (TLRs) are
responsible for detecting microbial pathogens and initi-
ating innate immune responses. Upon recognition of the
pathogens, TLRs stimulate the rapid activation of innate
immunity and induce the production of proinflamma-
tory cytokines and upregulation of costimulatory mole-
cules [58]. In particular, 39 out of the 100 genes of this
pathway are part of our differentially expressed dataset.
The resulting TV-DBNs showed that the majority of the
known interactions, occurring between the 39 members,
are identified in the first three days after viral invasion
and they fade out in the next days. For example, the
interactions among TIrl (cluster 15), TIr2 (cluster 8)
and TIr6 (cluster 14), between Tlr7 (cluster 11) and
Myd88 (cluster 29) as well as between Pik3r3 (cluster
33) and Akt3 (cluster 8) are observed until day 3 p.i.,
whereas interactions between Ifubl (cluster 32) and
Ifnar2 (cluster 12) and among Statl (cluster 9), Cxcl10
(cluster 17) and Cxcl9 (cluster 18) are observed until
day 5 p.i.

Finally, we zoomed into the dynamics of NOD-like
receptor signaling pathway, where 18 out of the 58
members are included in our dataset. Recently, it was
shown that Nlrp3, member of the NOD-like receptor
family, is activated after influenza virus infection. Nlrp3
forms a complex, called inflammasome, with apoptosis
associated speck-like protein containing a caspase
recruitment domain (ASC) and caspase-1 [59]. Activa-
tion of caspase-1 through Nirp3 and ASC is necessary
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for converting pro-I11b, pro-I118 and pro-Il33 into
mature cytokines. I11b and Il118 are potent pro-inflam-
matory cytokines, and 1133 promotes immune responses
mediated by Th2 cells. Our TV-DBNs identified interac-
tions between Mapk3 (cluster 26), Ccl5 (cluster 32) and
Tnf (cluster 10) as well as between Mapk8 (cluster 27),
Mapk9 (cluster 12) with 1I6 (cluster 24) in the first two
days, while the interaction between Caspl (cluster 14)
and 1/1b (cluster 32) was traced in days 4 and 5 p.i. It is
worth mentioning that the amount of the recovered
known gene-gene relationships of our cluster-based
approach can offer to biologists novel hypotheses, about
the involvement of other genes whose functional role is
still unknown, yet belong to the same clusters where the
gene-gene interactions were detected.

Conclusions

Using the TV-DBN method on large scale expression
data after an external perturbation of a biological sys-
tem, such as an infection of the lung with a virus, our
proposed approach contributed towards obtaining a dee-
per understanding of the dynamic changes at the mole-
cular level. We succeeded in detecting several gene-gene
interactions known to be important in early host
response.

In the near future, more refined network structures
will be provided and hidden aspects of the innate
immune system will be revealed upon availability of
experimental data of more dense time series gene
expressions. Thus, the dynamically reconstructed GRNs
will be available for monitoring HIN1 disease develop-
ment and outcome.

Additional material

Additional file 1: Gene members of 35 clusters. List of gene members
for the 35 clusters (with Entrez gene IDs and short description per gene).

Additional file 2: Biological Process GO enrichment analysis of the
35 clusters. We examined the derived 35 clusters with respect to
biological process GO terms with the use of DAVID Bioinformatics
Resources functional annotation tool.

Additional file 3: PPI/Protein-DNA Interaction data. \We downloaded
InnateDB protein-protein interaction (PPI) and protein-DNA interaction

data and isolated all interaction groups with members included in our
dataset.

Additional file 4: Transcription factors. We downloaded all known and
candidate Transcription Factors (TFs) from TFCat database. This table
displays all TFs included in our dataset and the cluster in which they are
located.
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