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Abstract

Atherosclerosis results from dyslipidemia and systemic inflammation, associated with the strong metabolism and
interaction between diet and disease. Strategies based on the global profiling of metabolism would be important
to define the mechanisms involved in pathological alterations. Metabonomics is the quantitative measurement of
the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic
modification. Metabonomics has been used in combination with proteomics and transcriptomics as the part of a
systems biology description to understand the genome interaction with the development of atherosclerosis. The
present review describes the application of metabonomics to explore the potential role of metabolic disturbances
and inflammation in the initiation and development of atherosclerosis. Metabonomics-based omics study offers a
new potential for biomarker discovery by disentangling the impacts of diet, environment and lifestyle.
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Introduction
Living systems are dynamic and complex, and their
behavior may be hard to predict from the properties of
individual parts. Systems biology is the strategy of inte-
grating complex data about the interactions in systems
of biological components from diverse experimental
sources using interdisciplinary tools and personnel [1].
Atherosclerosis is one of the leading causes responsible
for cardiovascular morbidity and mortality, a compli-
cated and multifactorial disease associated with geno-
types and environmental factors [2,3]. It has been
suggested that lipid and inflammatory component play
an important role in the pathogenesis of atherosclerosis.
Metabonomics is the quantitative measurement of the
dynamic multiparametric metabolic response of living
systems to pathophysiological stimuli or genetic modifi-
cation [4]. It is expected that metabonomics will become
a more and more important global systems biology tool.
Recently metabonomics has been used in conjunction
with proteomics and transcriptomics as part of a sys-
tems biology description of cardiovascular disease. It uti-
lizes high-throughput approaches to profile large

numbers of patients as part of epidemiology studies to
understand how the genome interacts with the develop-
ment of atherosclerosis [5]. Various metabolites have
been identified as indicators for a variety of diseases
[6,7]. The concentrations of metabolites often vary in
response to therapy or disease stage. Furthermore, the
metabolites could be used as biomarkers to carry infor-
mation about the sites and mechanisms of disease.
Metabolites have also been used as predictive model for
disease risk, individual susceptibility, or as markers of
recovery from an illness [8].
Metabolomics requires the employment of efficient

analytical tools simultaneously together with bioinfor-
matics. Nevertheless, there is not a single analytical plat-
form nowadays capable of analyzing the full set of
metabolites in a biological sample. Metabonomics, and
the related field of metabolomics, uses tools such as
liquid chromatography-mass spectrometry (LC-MS) or
gas chromatography-mass spectrometer (GC-MS)or
capillary electrophoresis and nuclear magnetic resonance
(NMR) spectroscopy to analyze chemical components
[9]. Jeremy K. Nicholson and John C. Lindon [10] said
that the distinction between metabonomics and metabo-
lomics is mainly philosophical, rather than technical.
The basic principle of relating chemical patterns to biol-
ogy is same. In practice, the two terms are often used
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interchangeably. Metabolic disturbances are the key fac-
tor in both the initiation and progression of athero-
sclerosis. There is ample evidence that
hypercholesterolemia (that is, elevated plasma levels of
low-density lipoprotein (LDL) and very low-density lipo-
protein (VLDL) induced by genetic modification or
enhanced intake of dietary lipids is a major causative
factor in atherogenesis [11,12]. Because samples of bio-
logical fluids (usually urine or blood) can be collected
fairly easily, the time-dependent fluctuations of metabo-
lites that occur in response to disease, drug effects or
other stimuli. By using GC-MS or NMR, metabonomics
can easily study these changes in real-time way. And
metabonomics cuts through the problems by monitoring
the global outcome of all the influential factors for
example environmental and lifestyle factor, without
making assumptions about the effect of any single con-
tribution to that outcome.
Moreover, to compare with proteomics and transcrip-

tomics, metabonomics is rather rapid and economic
[13]. Metabonomics is also a high throughput approach
used in a large scale of population epidemic study, while
transcriptomic studies can be quite costly and proteomic
studies relatively time consuming [13].

Data handling of metabonomics in atherosclerosis study
Multiple analytical techniques and metabolome database
are developed in recent years. Spectral processing and
post-experimental data analysis are the major tasks in
metabonomics studies. While in data analysis, the Prin-
cipal Components Analysis (PCA), Hierarchical Cluster
Analysis (HCA), Soft Independent Modeling of Class
Analogy (SIMCA) and Artificial Neural Network (ANN)
are the major techniques. The researchers could select
them according to the research destination [14]. The
data generated in metabonomics usually consist of mea-
surements performed on subjects under various condi-
tions. Several statistical programs are currently available
for analysis of both NMR and mass spectrometry data.
The first comprehensive software was developed by the
Siuzdak laboratory at The Scripps Research Institute in
2006. It is called XCMS, is freely available, has over
20,000 downloads since its inception in 2006 [15], and
is one of the most widely cited mass spectrometry-based
metabolomics software programs in scientific literature.
Other popular metabolomics programs [16-18] for mass
spectral analysis are MZmine, MetAlign, MathDAMP,
which also compensate for retention time deviation dur-
ing sample analysis. Although a high-throughput meta-
bolomics approach to atherosclerosis studies brings
many advantages, it also brings a danger of generating
false-positive associations due to multiple testing and
overfitting of data. Application of traditional statistical
approaches (e.g., Bonferroni correction) in this setting

tends to levy an insurmountable statistical penalty that
can obscure biologically relevant associations. Even
newer statistical techniques [19,20], such as advanced
resampling methods or control of the false discovery
rate, do not adequately address the fundamental pro-
blem of how to detect subtle but important changes in
multiple variables identified in an “omics” approach.
Meanwhile, there are more and more database, e.g.,

Small Molecule Pathway Database (SMPDB), LIPID
Metabolites And Pathways Strategy (LIPID MAPS),
Human Metabolome Database (HMDB) to support
metabolomics study [21,22]. HMDB [23] is a Web-based
bioinformatic/cheminformatic resource with detailed
information about human metabolites and metabolic
enzymes. It could be used for fields of study including
metabolomics, biochemistry, clinical chemistry, biomar-
ker discovery, medicine, nutrition, and general educa-
tion. Since its first release in 2007, the HMDB has been
used to facilitate the research for nearly 100 published
studies in metabolomics, clinical biochemistry and sys-
tems biology.

Metabonomic strategies to study metabolic disturbances
and lipotoxicity
The global collection of metabolites in a cell or organ-
ism is often called the metabolome; this refers to all
small molecules that exclude nucleic acids and proteins.
There is a new term “Lipidomics” [24], a branch of
metabolomics, is a systems-based study of all lipids, the
molecules with which they interact, and their function
within the cell. Using LC-MS based lipidomics, Clish et
al [25] demonstrated altered fatty acid metabolism in 9
weeks apolipoprotein E3-Leiden (ApoE*3) transgenic
mice with only mild type I and II atherosclerotic lesions,
reflected by an increase in lipid triglycerides and a
decrease in lyso-phosphocholine. In an analogous man-
ner, Martin JC, et al [26] gave the hamsters high fat diet
to examine the suitability of plasma metabonomics to
determine the severity of diet-induced atherosclerosis.
They found that VLDL lipids, cholesterol, and N-acetyl-
glycoproteins were the most positively correlated meta-
bolites. These metabolites predicted 89% of atherogenic
variability compared to the 60% predicted by total
plasma cholesterol alone. Which demonstrates plasma
metabonomics may be helpful in disease diagnosis of
diet-induced atherogenesis by identifing novel potential
disease biomarkers (Figure 1 is a simplified workflow for
a typical metabonomic experiment). Furthermore, ana-
lyzing different kinds of body fluid simultaneously could
provide more description of disease. Zhang F, et al [27]
collected plasma and urine samples from the disease
and control rats for the metabonomic analysis. 12 meta-
bolites in plasma and 8 endogenous metabolites in urine
were identified as potential biomarkers for
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atherosclerosis. The altered metabolites suggested
abnormal metabolism of phenylalanine, tryptophan, bile
acids and amino acids.
Metabolic disturbance of atherosclerosis exist not only

in circulation, but also could be found in local vessel.
Using 2-dimensional gel electrophoresis and mass spec-
trometry, researchers identified 79 protein species that
were altered during various stages of atherogenesis [28].
Simultaneously by using NMR, they found a decline in
alanine and a depletion of the adenosine nucleotide pool
in vessels of 10-week-old apolipoprotein E-knockout
mice [28]. More importantly, the study demonstrated
the power of a combined “-omics” platform. These tech-
niques complemented each other and provided a more
comprehensive dataset of protein and metabolite
changes during atherogenesis and highlights potential
associations of immune-inflammatory responses, oxida-
tive stress, and energy metabolism. The study suggested
that vascular cells might respond to hyperlipidemia by
metabolizing lipids instead of glucose. Increased fatty
acid oxidation would exert a negative feedback on the
activity of the pyruvate dehydrogenase complex slowing
down glucose metabolism, the main source of energy
for the vasculature [29,30]. For further elucidation, the
researchers observe the effects of attenuating lesion for-
mation. They found it was associated with alterations of
reduced form of nicotinamide-adenine dinucleotide
phosphate (NADPH) generating malic enzyme, which

provides reducing equivalents for lipid synthesis and
glutathione recycling, and successful replenishment of
the vascular energy pool [28].
Metabonomics also offers a deep insight on the clini-

cal study of atherosclerosis related disease. The plasma
of patients with stable carotid atherosclerosis have been
fingerprinted with both GC-MS and 1HNMR [31]. 24
metabolites that were significantly modified in the group
of atherosclerotic patients and were associated to altera-
tions of the metabolism characteristics of insulin resis-
tance that can be strongly related to the metabolic
syndrome. For example, D-glucose, 3-OH-butyrate
(3HB) and acetoacetate were increased; citrate, isoci-
trate, succinate and malate were downregulated. The
correlations among the results of GC-MS and 1H NMR
fingerprints can provide complementary information
and a deeper insight into the patient state. However,
clinical investigation is few, while most studies have
focused on the pathophysiological study of atherosclero-
sis on the animal models. Given the current interest in
this field, particularly in drug efficacy assessment and
lifestyle and diet interventions, there is urgent needs to
enhance clinical metabonomics study [13].

Metabonomic strategies to study inflammation in
atherosclerosis
More and more studies in basic and experimental
science have illuminated the role of inflammation and

Figure 1 A “typical” and “simplified” workflow for a metabonomic experiment. Samples are collected and extracted for the metabolites
measurement. By using combination of techniques and data analysis, metabonomics provides information which could be used to identify
potential biomarkers, build predictive models for system biology studies.
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the underlying cellular and molecular mechanisms that
contribute to atherogenesis. The development of athero-
sclerosis-induced metabolic perturbations of fatty acids,
such as palmitate, stearate, and 1-monolinoleoylglycerol,
showed that palmitate significantly contributes to ather-
osclerosis development via targeting apoptosis and
inflammation pathways [32]. Metabolic disturbances in
the vasculature stimulate local secretion of inflammatory
cytokines. Recent studies implied that the metabolic
actions of cytokines such as Interleukin-6 may aim to
maintain glucose homeostasis in the smooth muscle
cells and contribute to the general adaptation of the vas-
culature to stress stimuli [33].
Given the strong interaction between metabolic distur-

bances and inflammation, we would expect metabo-
nomics study should hold substantial promise in
defining the mechanism involved in this collection of
pathologies. Kleemann and co-workers [34] used a com-
bined metabolomic and transcriptomic study of the liver
to investigate the inflammatory component of athero-
sclerosis that originates in this organ (Figure 2). In high-
est fat diet (HC) group, atherosclerotic lesions of
ApoE*3 Leiden mice was proportional to dietary intake
of cholesterol, with pro-inflammation being observed in
the liver. To verify whether the switch from metabolic
adaptation (with low-cholesterol diets treatment, LC) to
hepatic inflammatory stress (with HC treatment) is also
reflected at the metabolite level, they performed a com-
prehensive HPLC/MS-based lipidome analysis

(measurement in total of about 300 identified di- and
triglycerides, phosphatidylcholines, lysophosphatidylcho-
lines, cholesterol esters) on liver tissue of Con/LC/HC
groups and corresponding plasma samples. The clusters
of the Con and LC groups overlapped partly, demon-
strating that the Con and LC groups have a similar
intrahepatic lipid pattern. Which indicates that the
metabolic adjustments of genes in the LC group were
effective and enabled the liver to adjust to moderate
dietary stress. The HC cluster has no overlap with the
Con group, showing that the switch to a proinflamma-
tory liver gene expression profile is accompanied by
development of a new metabolic hepatic state, which
differs significantly from the Con group. Furthermore,
while the LC induced transcriptional changes that
appeared protective, predominately controlled by sterol
regulatory element binding protein (SREBP)1 and
SREBP2, specific b1 glycoprotein (SP-1), retinoid ×
receptor (RXR) and peroxisome proliferator activated
receptor-a (PPARa), the high-cholesterol diet not only
induced inflammation but also altered lipid metabolism,
thus linking dyslipidaemia and inflammation in this ani-
mal model.
Metabonomics study has also been used to assess anti-

inflammatory drug efficiency in atherosclerotic cardio-
vascular disease such as myocardial infarction (MI).
Using metabolomic profiling of the inflammatory lipid
mediators, Li N and colleagues [35,36] documented a
significant decrease in epoxyeicosatrienoic acids/

Figure 2 Combined study of transcriptomics and metabolomics in atherosclerosis and liver inflammation induced by high fat diet in
ApoE*3 Leiden mice[34]. ApoE*3Leiden mice were treated with high cholesterol diets (HC), scored early atherosclerosis and profiled the
pathophysiological state of the liver by using transcriptomics and metabolomics techniques. In HC group, the livers of mice switched from a
resilient state to an inflammatory, pro-atherosclerotic state and developed atherosclerosis. HC-evoked changes were regulated by transcriptional
master regulators. These regulators control both lipid metabolism and inflammation, and thereby link the two processes.
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dihydroxyeicosatrienoic acids ratio in MI model, which
predicted a heightened inflammatory state. Treatment
with soluble epoxide hydrolase (sEH) inhibitors caused
altered pattern of lipid mediators from inflammation
towards resolution. Meanwhile, the oxylipin profiling
showed a significant parallel to the changes of inflam-
matory cytokines in the model. Although few studies are
available, metabolomics techniques provide evidence for
new therapeutic potentials of cardiovascular disease.

Conclusions
As the field of metabonomics advances, the ways in
which metabolites affect atherosclerotic states will
become clearer, and prevention and treatment of this
process will become more focused. The integration of
metabonomics with genetics, proteomics, and transcrip-
tomics would provide a systems biology description of
atherosclerotic cardiovascular diseases. A major chal-
lenge in the future will be the bioinformatics side of
metabonomics. For systems biology, the integration of
multi-level Omics profiles (also across species) is consid-
ered as central element [37,38]. Traditional statistical
methods for the study of static Omics datasets are of
limited relevance and new methods are required.
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