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Abstract

Background: In metabolomics, biomarker discovery is a highly data driven process and requires sophisticated
computational methods for the search and prioritization of novel and unforeseen biomarkers in data, typically
gathered in preclinical or clinical studies. In particular, the discovery of biomarker candidates from longitudinal
cohort studies is crucial for kinetic analysis to better understand complex metabolic processes in the organism
during physical activity.

Findings: In this work we introduce a novel computational strategy that allows to identify and study kinetic
changes of putative biomarkers using targeted MS/MS profiling data from time series cohort studies or other cross-
over designs. We propose a prioritization model with the objective of classifying biomarker candidates according
to their discriminatory ability and couple this discovery step with a novel network-based approach to visualize,
review and interpret key metabolites and their dynamic interactions within the network. The application of our
method on longitudinal stress test data revealed a panel of metabolic signatures, i.e., lactate, alanine, glycine and
the short-chain fatty acids C2 and C3 in trained and physically fit persons during bicycle exercise.

Conclusions: We propose a new computational method for the discovery of new signatures in dynamic metabolic
profiling data which revealed known and unexpected candidate biomarkers in physical activity. Many of them
could be verified and confirmed by literature. Our computational approach is freely available as R package termed
BiomarkeR under LGPL via CRAN http://cran.r-project.org/web/packages/BiomarkeR/.

Introduction
In metabolomics the bioinformatics-driven search for
highly-discriminatory biomarker candidates has become
a key task in the biomarker discovery process with the
objective of introducing novel biomarkers aiding in diag-
nosis or therapeutic management [1-4].
A wide spectrum of feature selection methods including

filter, wrapper or embedded algorithms is available for the
identification of significant features in biomedical datasets
[5-9]. In particular filter algorithms calculate a measure
(score), allowing to rank and prioritize putative biomarker

candidates according to their predictive value [8]. How-
ever, research is still needed to provide bioinformatics
methods for the scientific community that address paired/
dependent test hypotheses or time series studies. In addi-
tion, the quantitative analysis of networks has increasingly
become an important technique for the biological inter-
pretation of changes in disease-associated metabolic path-
ways, allowing the study of interconnectivity, interaction
or correlation among analytes. For this type of analysis,
different types of topological graph descriptors (e.g., para-
metric or partition-based entropy measures) can be used
to analyze such complex biological networks [10,11].
In this short report we propose a new computational

strategy that identifies metabolic biomarker candidates
according to their discriminatory ability from dependent
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samples, and we review and interpret them using a net-
work-based approach. For the biomarker identification
and prioritization step we apply a recently published fil-
ter algorithm, named Biomarker Identifier (BI), which
calculates a score measure for every analyte, represent-
ing the discriminatory ability in terms of the product of
sensitivity and specificity, and in an analogous way for
paired samples [12]. After BI prioritization we apply a
new method to infer a network from the data by calcu-
lating analyte ratios, representing interactions of analyte
pairs in the network. This discovery step aims at verify-
ing metabolites selected from the first step, and review-
ing identified highly discriminatory analyte pairs
according to their connectivity strength within the net-
work. This connectivity network permits scientists to
review single and multiple pathway reactions, e.g., by
mapping this information on biochemical network data-
bases like KEGG [13] for identifying functional changes
or abnormalities in human metabolism. Finally, we
demonstrate results of this approach using targeted MS/
MS profiling data for the search of metabolic signatures
in physically fit persons during bicycle exercise, yielding
known and partly unexpected interactions among ana-
lytes of physical activity.

Computational strategy
Step 1: Feature ranking and prioritization model
We apply the so-called BI model for selecting and prior-
itizing analytes into classes of weak, moderate and
strong predictors, addressing both dependent and inde-
pendent test hypotheses. In this work we focus in parti-
cular on metabolites changing over time for a given
cohort (paired or dependent sample). The paired BI
(pBI) is thus defined as [12]:

pBI = λ · DA∗ ·
√∣∣∣∣�change

CV

∣∣∣∣. sign(�change), (1)

�change =
{

� if � ≥ 1
− 1

�
else

(2)

where l is a scaling factor, DA* is a discriminance
measure defined as percent change of metabolite levels
in one direction versus baseline and Δchange represents
the median percent change. CV is the coefficient of var-
iation and is set to 1 if CV > 1 by default to consider
solely data distributions with smaller variance [12].

Step 2: Network inference
By definition, a network G is defined as a set of vertices
V which are connected by edges E: G = (V, E) [14].
Inferring the network includes three steps: (i) calculating
all ratios R between metabolites M which represent

chemical interactions, where rij =| log2
(
mi
mj

)
| with i >j,

and m Î M, r Î R. The logarithm induces symmetry of
the ratios and their reciprocals, respectively. Note that
by definition the metabolite concentrations must be
positive (m ≥ 0); (ii) computing pBI scores sij , s Î S on
the logarithmic ratios R and (iii) constructing a graph G
with:

Gij =
{
1 if | sij |> τ

0 else,
(3)

for i, j Î 1, ..., |M|. A ratio r Î R is designated as a
putative pathway reaction of the form A ® B, where a
reactant A is metabolized into a product B via single or
multiple reaction paths. To consider significant predic-
tor pairs in the network the threshold τ has been evalu-
ated using controlled simulated data in form of D(D ~
N(10, 1), see “Additional file 1“) as proposed by Guo et
al. [15]. Next, we inferred the network for different
values for τ and used vertices (metabolites) with at least
one edge (i.e., degree > 0) as input for classification and
calculated the mean accuracy of the classifier using 10-
fold cross-validation (see “Additional file 1“).
In contrast to a static network, typically constructed

from data of independent case/control studies, a kinetic
network can be inferred on single analytes or analyte
pairs (as done in this work) with changes in levels
greater than the fixed threshold τ at timepoint tx vs.
baseline (t0 ), representing the dynamics of circulating
metabolites over time.
Coupling step 1 with step 2 of our discovery strategy

allows for verifying preselected metabolites of step 1 as
highly connected vertices (hubs) in the network in step
2. Note that a high degree of interconnectivity of a hub
(i) represents analogously a high discriminatory and pre-
dictive value of this hub, and (ii) embedded in a network
of pathway reactions a key role of normal or abnormal
metabolism.
Our computational approach is freely available as R

package termed BiomarkeR under LGPL via CRAN
http://cran.r-project.org/web/packages/BiomarkeR/. We
chose to implement our method in R because of the
broad abundance of this programming language in the
bioinformatics community and its open source nature.
Additionally, there is a multitude of packages available
for the handling and analysis of network-based data
(e.g., igraph[16], QuACN[11] or BioNet[17]).

Bicycle stress test
We here present a new computational method for the
search for stress biomarkers in physically fit persons
using targeted MS/MS profiling technology. Using this
approach 60 analytes were identified by applying
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characteristic mass transitions in multiple reaction mon-
itoring, precursor and neutral loss scans, and quantified
using internal standards added to the samples [18].
Briefly, metabolite profiling of blood samples of a total

of 30 active and physically fit individuals (22 males, 8
females) with a mean age of 38.33 ± 7.16 years and
mean body mass index 23.88 ± 2.50 kg/m2 was carried
out. The used data represents analyses of residual mate-
rial of a standard sport-physical examination where each
proband had to bicycle on an exercise bike for increas-
ing steps of Watt (W) levels (each step 25 W) until the
individual’s maximum capacity was reached.
Capillary blood samples were obtained from the ear

lobe before starting the exercise (at rest, t0 ), and at all
Watt levels up to the individual’s maximum perfor-
mance (tmax ). A total of 60 metabolites (lactate, amino
acids and acyl carnitines) were measured in absolute
concentration values (μmol/L) [19]. All individuals gave
written informed consent to the attending physician.

Results and discussion
Using our computational approach the pBI priority model
was applied as first step to preselect key metabolites from
the measured pool of 60 analytes by computing scores at
timepoint t0 (at rest) vs. tmax (at individual maximum per-
formance). Figure 1 shows the pBI scores, exhibiting five
metabolites (i.e., lactate, alanine, glycine and the two short-
chain acyl carnitines C2 and C3) categorized as strong pre-
dictors. Figure 2 demonstrates the corresponding dynamic
network for τ = 73 again with lactate, alanine, C2 and C3

as major hubs, and now in the role as representatives of a
panel of reaction pairs, coinciding with the univariate pBI
metabolite ranking. Interestingly, using the controlled
simulated data a threshold of τ = 73, which corresponds to
the cut-off score for a strong predictor as defined in [12],
led to the maximum mean accuracy using a K-nearest-
neighbor classifier [20], outperforming also commonly
used correlation-networks [21] (see “Additional file 1“).
To validate our findings a literature review and analysis

of related KEGG pathways were performed. Among the
total of 60 detected metabolites, our analysis revealed
5 key metabolites (lactate, alanine, glycine, and the two
short-chain acyl carnitines C2 and C3) associated with
physical exercise. These results are consistent with
previous reports [19,22,23]. As is well known, anaerobic
glycolysis is the main way for energy supply during exer-
cise workout. Lactate is a major end product of the meta-
bolism of glucose through the glycolytic pathway [23].
The skeletal muscle is the main organ producing large
amounts of lactate. Typically, the production of lactate is
greatly increased during exercise via the oxidative meta-
bolism [23]. In our work, we detected a pBI score for
lactate greater than 400 which represents a strong corre-
lation with physical exercise. The known biochemical or
physiologic effects of carnitine suggest that supplementa-
tion of carnitine may improve exercise performance
[24,25]. First, carnitine is required for mitochondrial fatty
acid oxidation, which would permit glucose utilization to
decrease, and thus preserve muscle glycogen content and
ensure maximal rates of oxidative ATP production
[24,26]. Second, generation of acetylcarnitine would
potentially decrease acetyl-CoA content, relieving inhibi-
tion of pyruvate dehydrogenase and decrease the produc-
tion of lactate [23,24,27]. All of these can potentially
improve physical performance during high-intensity
exercise. Besides, recent studies demonstrated that short
term administration of glycine propionyl-L-carnitine
(GPLC) significantly elevates levels of nitric oxide meta-
bolites at rest and in response to reactive hyperemia
[28-30], and can also enhance exercise performance in
healthy, trained individuals [28]. Carnosine is synthesized
in skeletal muscle from L-histidine and A-alanine amino
acids [22]. One important physiological role of carnosine
is the maintenance of acid-base homeostasis [22,31]. Stu-
dies have shown that supplementation with A-alanine or
exercise can increase muscle carnosine content and
therefore total muscle buffer capacity with the potential
to cause improvements in physical exercise [19,22].
Overall, more than 20 pathways were revealed. We

selected the most related pathways which include at least
2 metabolites identified by our coupled 2-step discovery
step (Table 1). It shows that the citrate cycle (TCA cycle),
multiple amino acid and fatty acid metabolisms are greatly
activated in physical exercise.

Figure 1 pBI scores. pBI scores of top ranked analytes lactate,
alanine, C2, C3 and glycine showing increased levels when
comparing subjects at rest vs. individual maximum. Dashed lines
indicate the score cut-off for strong predictors (|pBI| > 73), as
defined in [12]. images/pBIScores.png.
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Conclusion
We have introduced a powerful tool for the search,
prioritization and network analysis of putative biomarker
candidates in metabolomic studies. Our 2-step approach
has several benefits: 1) BI can be applied to dependent
samples, calculating absolute scores for prioritizing bio-
marker candidates into classes of weak, moderate or
strong predictors, and computes positive and negative
scores, indicating whether the metabolites concentration

is increased or decreased compared to its reference. 2)
The proposed approach allows to review and interpret
findings and thus aids in biochemical interpretation of
(ab)normal metabolism by reviewing pathway reactions
within the network.
Using our coupled 2-step discovery strategy, we were

able to identify and confirm multiple metabolites, i.e.,
lactate, glycine, alanine, C2 and C3 that are closely asso-
ciated with metabolism of physical activity [22,23,32].

Figure 2 Inferred network. The resulting kinetic network (τ = 73) exhibits lactate, alanine, C2 and C3 as major hubs (green color) in the center of the
network with the highest degree of connectivity. Note that an edge between metabolite mi and mj indicates a pBI value of the absolute logarithmic
ratio of mi and mj greater than τ (e.g., for the edge between C2 and C16 |pBI(|log2 (C2/C16)|)| > 73). Identified key metabolites during physical activity
could also be validated by literature [22,23,32]. The number following the underscore of acyl-carnitines symbols indicates the number of double binds
of the carbon-carbon bonds (e.g., for C10_1 the number of double binds is 1). The network is visualized using Cytoscape [33]. images/pbiGraph.png.
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Additional material

Additional file 1: Simulation results. This PDF file contains an
additional figure comparing mean accuracies for different thresholds
using controlled simulated data and a K-nearest-neighbor as classifier.
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