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Abstract

Background: Using serum, plasma or tumor tissue specimens from biobanks for biomarker discovery studies is
attractive as samples are often readily available. However, storage over longer periods of time can alter
concentrations of proteins in those specimens. We therefore assessed the bias in estimates of association from
case-control studies conducted using banked specimens when maker levels changed over time for single markers
and also for multiple correlated markers in simulations. Data from a small laboratory experiment using serum
samples guided the choices of simulation parameters for various functions of changes of biomarkers over time.

Results: In the laboratory experiment levels of two serum markers measured at sample collection and again in the
same samples after approximately ten years in storage increased by 15%. For a 15% increase in marker levels over
ten years, odds ratios (ORs) of association were significantly underestimated, with a relative bias of -10%, while for
a 15% decrease in marker levels over time ORs were too high, with a relative bias of 20%.

Conclusion: Biases in estimates of parameters of association need to be considered in sample size calculations for
studies to replicate markers identified in exploratory analyses.

Background
Using specimens, including serum, plasma or tumor tis-
sue, from biobanks is attractive for biomarker studies, as
samples are readily available. For example, archived
patient tissue specimens from prospective clinical trials
can be used for establishing the medical utility of prog-
nostic or predictive biomarkers in oncology [1]. Conve-
nience samples from clinical centers and hospitals may
be of use in biomarker discovery studies. The National
Cancer Institute maintains a website http://resresources.
nci.nih.gov that lists human specimen resources avail-
able to researchers, including specimens and data from
patients with HIV-related malignancies, a repository of
thyroid cancer specimens and clinical data from patients
affected by the Chernobyl accident, normal and cancer-
ous human tissue from the Cooperative Human Tissue
Network (CHTN) and blood samples to validate blood-
based biomarkers for early diagnosis of lung cancer.
However, freezing specimens over long periods of time
can alter levels of some of their components [2] causing

decreases or increases in marker concentrations [3-5].
Among other factors, storage temperature [6-8] and sto-
rage time [3,9,10] are known to impact frozen samples.
Thus, even in carefully collected and stored samples
time alone can alter marker levels.
Our work was motivated by a biomarker discovery

study at the Medical University of Innsbruck that aims
to identify biomarkers to predict breast cancer recur-
rence. In that study, among other investigations frozen
serum samples from women diagnosed with breast can-
cer at the Medical University of Innsbruck Hospital
between 1994 and 2010 will be used to identify candi-
date markers that predict breast cancer recurrence
within five years of initial diagnosis. These markers will
then be validated in prospectively collected specimens.
While the focus of discovery is the testing of associa-

tion of markers with outcome, sample size considera-
tions for validation studies are often based on estimated
effect sizes seen in discovery studies. Any substantial
bias in the effect sizes seen in the discovery effort will
thus result in sample sizes of the follow up study that
are too small (if associations are overestimated) or lead
to the analysis of too many costly biospecimens (if esti-
mates are too low). Additionally, degradation in markers
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could lead to missed associations, i.e. increased numbers
of false negative findings, as effects may be attenuated.
We used simulations to systematically assess the

impact of changes in marker levels due to storage time
on estimates of association of marker levels with out-
come in case-control studies. Our simulations are based
on parameters obtained from data from a small labora-
tory experiment, designed to assess the impact of degra-
dation on measurements of two serum markers. We
study two set-ups for our simulations, one when single
markers are analyzed, and one situation when multiple
markers are used. While the choices of parameters
depend on the specific setting, our results can help to
assess the potential magnitude of a bias in and to inter-
pret findings from studies that use biospecimens stored
over long periods of time.

Methods
Markers
Cancer antigen 15-3 (CA 15-3) is a circulating tumor
marker which has been evaluated for use as a predic-
tive parameter in breast cancer patients indicating
recurrence and therapy response. CA 15-3, the product
of MUC1 gene, is aberrantly over expressed in many
adenocarcinomas in an underglycosylated form and
then shed into the circulation [11]. High concentra-
tions of CA 15-3 are associated with a high tumor load
and therefore with poor prognosis [12]. Thus, post-
operative measurement of CA 15-3 is widely used for
clinical surveillance in patients with no evidence of
disease and to monitor therapy in patients with
advanced disease. Cancer antigen 125 (CA125),
another mucin glycoprotein, is encoded by the MUC16
gene. Up to 80% of epithelial ovarian cancers express
CA125 that is cleaved from the surface of ovarian can-
cer cells and shed into blood providing a useful bio-
marker for monitoring ovarian cancer [13].

Laboratory Methods
There are numerous reports on the impact of storage
time on levels of individual components measured in
serum in the literature [3,5,8,10,14,15]. We selected two
well-known markers and measured their degradation
over time. CA 15-3 and CA-125 were determined using
a microparticle enzyme immunoassay and the Abbott
IMx analyzer according to the manufacturers’ instruc-
tions. Serum samples were collected at the Medical Uni-
versity of Innsbruck, Austria, between 1997 and 2001.
Sample analysis was performed first at sample collection
(1997 - 2001) and then again in September 2009, after
storage at -30°C until 2004 and at -50°C thereafter. Ele-
ven samples were analyzed for CA 15-3, and nine for
CA125. Of the nine samples three had CA125 measure-
ments below the detection limit of the assay. These

samples were not used when computing mean and med-
ian differences.
Table 1 shows the values of the markers measured at

the time of collection and the corresponding values for
the same samples measured in September 2009.

Statistical Model
Single Marker Model
Let Yi be one if individual i experiences the outcome of
interest, i.e. is a case, and zero otherwise and let Xi be
the values of a continuous marker for person i. We
assume that in the source population that gives rise to
our samples, the probability of outcome is given by the
logistic regression model

P(Yi = 1|Xi) =
exp(μ + βXi)

1 + exp(μ + βXi)
. (1)

The key parameter of interest is the log-odds ratio b
that measures the increase in risk for a unit increase in
marker levels.

Table 1 Marker Concentration Changes

Date of sample
collection

Concentration measured %
change

at sample
collection

Sept
2009

CA 15-3

Nov 1997 166 187 12.65

Oct 1998 29 33 13.79

Apr 1995 10 12 20.00

Feb 2001 21 19 -9.52

Apr 2001 23 24 4.35

Feb 1999 33 34 3.03

Sep 2000 26 33 26.92

Sep 2000 24 33 37.50

Sep 2000 15 17 13.33

Sep 2000 12 16 33.33

Nov 1999 884 986 11.54

CA125

Feb 1999 83 96 15.66

Feb 1999 < LOD† < LOD

Feb 1999 < LOD < LOD

Feb 1999 51 69 35.29

Feb 1999 < LOD < LOD

Sep 2000 77 73 -5.19

Sep 2000 33 32 -3.03

Sep 1998 106 105 -0.94

Oct 1998 1273 2026 59.15
†LOD = limit of detection.

Concentrations of two markers, CA 15-3 and CA125, measured at the time of
freezing and then again after a long term storage. Measurements with
concentrations below the limit of detection were excluded from further
analysis.
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We assume that the biomarkers are measured in ret-
rospectively obtained case-control samples, as this is
practically the most relevant setting. That is, first n indi-
viduals with the outcome of interest ("cases”)and n indi-
viduals without that outcome ("controls”) are sampled
based on their outcome status, and then their corre-
sponding marker values X are obtained. In our motivat-
ing example cases are women who experience a breast
cancer recurrence within five years of initial breast can-
cer diagnosis, and controls are breast cancer patients
without a recurrence in that time period.
Storage Effects on Marker Measurements
Instead of the true marker measurement X, we observe
the value Zt of the marker after the sample has been
frozen for t time units, e.g. months or years. We assume
that Zt relates to X through the linear relationship

Zt = Xbt + ε. (2)

The additive noise is assumed to arise from a normal

distribution ε ∼ N(0, σ 2
ε ) . Without loss of generality we

focus on discrete time points, t = 0, 1, 2, ..., tmax = 10 in
our simulations. In the laboratory experiments, the mar-
ker levels for CA 15-3 increased by about 15% over a
period of 10 years (Table 1). Because no intermediate
measurements are available from our small laboratory
study, the true pattern of change over time is unknown.
Thus, we used three different sets of coefficients bj,t
with j = 1, 2, 3, reflecting linear, exponential and loga-
rithmic changes for the marker levels over time. Each
set of coefficients was chosen to result in an increase of
15% after ten years of storage.

For the linear function, bi1,t , the yearly increase in

marker levels was set to 1.5%. To model the non-linear

increases in marker levels, we estimated coefficients bi2,t
and bi3,t based on an approximated Fibonacci series ft,

where f0 = 0, f1 = 1, f2 = 2, and ft = ft-1 + ft-2 for t = 2,

..., 10. For the exponential function bi2,t we normalized

ft so that ftmax was 15%.

bi2,t = 100 + 0.15ft
100
ftmax

. (3)

For a logarithmic increase we used coefficients

bi3,t = 100(1 + 0.15) − bi2,tmax−t . (4)

To simulate decreases in marker values over time, we

used bd4 = −bi1, b
d
5 = −bi2, b

d
6 = −bi3 . All of these func-

tions are plotted in Figure 1.
It is also possible to analytically assess the bias in esti-

mates of in (1) when Zt is used instead of the true mar-
ker value X to estimate the association with disease.

From (2) we get that X conditional on the measured Zt

has a normal distribution, X|Zt ∼ N(Zt/bt , σ 2
X|Z , where

σ 2
X|Z = σ 2

ε /b
2
t . Then using results from Carroll et al. [16]:

logit(P(Y = 1|Zt)) ≈ μ + β/btZt

(1 + β2σX|Z/1.7)
1/2

, (5)

Where logit(x) = ln{x/(1 − x)} . For multiple, corre-
lated markers, which we study in the next section, a
closed form analytical expression equivalent to (5) is not
readily available.
Multiple Markers Model
We also studied a practically more relevant setting,
namely that multiple markers are assessed in relation to
outcome. We generated samples of p = 10 markers X =
(X1, ..., Xp) from a multivariate normal distribution, X ~
MVN(0,Ω). We studied two choices of covariance struc-
ture: first, we let Ω = (ωij) be the identity matrix, and
second we assumed that the markers were equally corre-
lated, with corr(Xi, Xj) = r, i ≠ j for various choices of r.
We first assumed that only one marker, X1, was truly

associated with outcome Y, and simulated Y from the
model

logit P(Y = 1|X1) = μ + βX1. (6)

We also then let three of the markers, X1, X2 and X3,
be associated with the outcome,

logit P(Y = 1|X1,X2,X3) = μ +
3∑

i=1
βiXi. (7)

In the simulations we let each marker change over
time based on equation (2) independently of the other
markers for t = 0, 1, 2, ..., tmax = 10. For X1 the change

Figure 1 Choices of bt. Three functions bit model an increase in
marker levels of 15% at t = 10, and three function bdt model a
decrease of 15% at t = 10.
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over ten years was 15%, and for each of the other mar-
kers we randomly selected a coefficient bit from a uni-
form distribution on the interval [-0.2, 0.2] and used the
chosen bit in equation (2). We thus allowed only
increases or decreases of 20% or less over ten years.

Simulations
To obtain case-control samples, we first prospectively
generated a cohort of markers and outcome values (Yi,
Xi), i = 1, ..., N. We drew Xi from a normal distribution,
X ~ N(0, 1), and then generated Yi given Xi from a
binomial distribution with P(Yi = 1|Xi) given in equation
(1) for i = 1, ..., N. We then randomly sampled n cases
and n controls from the cohort to create our case-con-
trol sample.
For the single marker setting, we then fit a logistic

regression model with Zt instead of X to the case-con-
trol data,

logit P(Y = 1|Zt) = μt + β∗
t Zt , (8)

and obtained the maximum likelihood estimate (MLE)

β̂∗
t that characterizes the association of outcome with

the marker measured after time t in storage.
For each setting of the parameters and for each choice

of bt in (2), we simulated 1000 datasets for each sample
size, n = 75 and n = 200 cases and the same number of
controls for the single marker simulations, and n = 250
and n = 500 for the multiple marker settings. We also
fit a logistic regression model based on the marker level
X at time t = 0 that corresponds to no time related
change in marker levels.
For the multiple marker setting, we analyzed the data

using two different models. First, we fit separate logistic
regression models for each marker,

logit P(Y = 1|Zk,t) = μt + β∗
k,tZk,t , k = 1, . . . , p (9)

We also estimated regression coefficients for every
time step from a joint model,

logit P(Y = 1|Z1,Z2, . . . ,Zp) = μt +
p∑

k=1
β∗
k,tZk,t. (10)

In addition to the bias, we also assessed the power to
identify true associations. When we fit separate models
(9), we used a Bonferroni corrected type 1 error level a
= 0.05/p to account for multiple testing. For the setting

(10) we tested the null hypothesis H0 : β∗
1 = . . . = β∗

p = 0

using a chi-square test with p degrees of freedom. Let-

ting β̂ = (β̂1, . . . , β̂p) be the vector of parameter esti-

mates of the coefficients in (10), and �̂ denote
the corresponding estimated covariance matrix, we com-
puted

T = β̂ ∗′ �̂−1β̂∗ ∼ χ2
p . (11)

Of course model (10) can only be fit to data when p is
substantially smaller than the available sample size,
while model (9) does not have this limitation. For the
multivariate simulations we computed the power, that is
the number of times the null hypothesis is rejected over
all simulations.

Results
Laboratory Experiment
On average both CA 15-3 and CA125 levels increased
with increasing time in storage, CA 15-3 levels increased
by 15.18% (standard error 4.14) and CA125 16.82%
(standard error 10.533) over approximately ten years
(Table 1). This increase is most likely due to evapora-
tion of sample material attributed to the usage of sample
tubes with tops that did not seal as well as the newer
ones. A similar evaporating effect was reported by Burtis
et al. [17]. Alternatively, the standard used for the cali-
bration of the assay may have decreased over the years,
resulting in higher levels for the more recent analysis.

Simulation Results
Single Marker Results
We simulated storage effects for a period of ten years

for three functions (bi1, b
i
2, b

i
3 ) that resulted in a 15%

increase of marker levels after t = 10 years, and three

functions, (bd1, b
d
2, b

d
3 ), that resulted in 15% decrease after

t = 10 years. We let μ = -3 and b = 0.3 in model (1) that
describes the relationship between the true marker
levels and outcome. The error variance in model (2) for
the change of the marker over time was σ 2

ε = 0.01. We

analyzed the simulated data at three time points, at sam-
ple collection (t = 0), and after t = 5 and t = 10 years.

Table 2 shows the results for functions bi1, b
i
2, b

i
3 , that

result in increases of marker levels and bd1, b
d
2, b

d
3 , that

cause decreases of marker levels. The results in Table 2
are means over 1, 000 repetitions for each choice of
sample size. Table 2 also shows the relative bias, com-

puted as rel.bias = (β − β̂∗
t )/β . As expected, the true

association parameter b = 0.3 in (1) was estimated with-
out bias for t = 0 for all sample sizes. For t = 5, the rela-

tive bias ranged from 2% for bi2 to -9% for bi3 for n = 75

cases and controls, and from 1% for bi2 to -10% for bi3
for n = 200 cases and controls. The small positive bias

for t = 5 for bi2 was not seen when the simulation was

repeated with a different seed. The differences in relative
bias reflect the differences in the shape of increase of
marker values. As all functions were chosen to cause a
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15% increase in marker levels after t = 10 years, all func-
tions resulted in the same relative bias at t = 10, which
ranged from -10% for n = 75 cases and controls to -11%
for n = 200 cases and controls. For example, at t = 10

instead of b = 0.3 we obtained β̂∗
10 = 0.269 for n = 75

cases and controls and β̂∗
10 = 0.268 for n = 200 cases

and controls, respectively. The findings for decaying
markers levels were similar. Again, no bias was detected
in the estimates for t = 0, while the relative bias ranged

from 4% for bd2 to 18% for bd3 for n = 200 cases and

controls. After t = 10 years in storage, the relative bias
was around 20% for n = 75 and n = 200 cases and con-
trols. These results agree well with what we computed
from the analytical formula (5). For all settings we stu-
died the model based standard error estimates were
similar to the empirical standard error estimates and
were thus not shown.
Results were similar for b = 0.5, b = 1.0, and b = -0.3,

given in Additional File 1.
Multiple Marker Results
Table 3 presents results for the multiple marker simula-
tions, when one marker was truly associated with

outcome, but the model that was fit to the data included
all ten markers simultaneously (10). The results were
very similar to the single marker simulations, with biases
of about 10% after ten years. Correlations among mar-
kers did not affect the results. For example, the effect

estimate after five years were β̂∗
5 = 0.285 and 0.281 for

n = 250 and n = 500 for uncorrelated markers, and β̂∗
5

= 0.282 and 0.278 for n = 250 and n = 500 for fairly
strong correlations of r = 0.5. The power to test for
association using separate test with a Bonferroni
adjusted a-level was adequate only for n = 500 cases
and n = 500 controls.
Table 4 shows the results when three of the ten mar-

kers were associated with disease outcome. The true
association parameters in equation (7) were b1 = 0.3, b2
= 0.2 and b3 = 0.2. The changes in marker levels after
ten years were 15%, 20% and 10% for X1, X2 and X3,
respectively. After t = 10 years the bias in the associa-
tion estimate for marker X1 was similar to the single
marker case, and the case when only one of ten markers

was associated with outcome, with β̂∗
1,10 = 0.261, with a

13% underestimate of true risk. For the other two

Table 2 Univariate Marker Results

n = 75 n = 200

increase over time decrease over time increase over time decrase over time

t = 0

bi1 bi2 bi3 bd1 bd2 bd3 bi1 bi2 bi3 bd1 bd2 bd3

β̂0 0.309 0.309 0.309 0.309 0.308 0.308 0.308 0.308 0.307 0.307 0.308 0.308

se.emp 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003

rel.bias 0.029 0.029 0.029 0.03 0.028 0.028 0.026 0.026 0.024 0.024 0.026 0.026

rel.bias.sd 0.566 0.566 0.568 0.571 0.568 0.563 0.343 0.342 0.343 0.341 0.342 0.34

t = 5

bi1 bi2 bi3 bd1 bd2 bd3 bi1 bi2 bi3 bd1 bd2 bd3

β̂5 0.288 0.305 0.272 0.334 0.312 0.356 0.287 0.304 0.271 0.331 0.312 0.355

se.emp 0.005 0.005 0.005 0.006 0.005 0.006 0.003 0.003 0.003 0.003 0.003 0.004

rel.bias -0.041 0.015 -0.092 0.112 0.042 0.186 -0.044 0.013 -0.096 0.105 0.039 0.184

rel.bias.sd 0.527 0.559 0.5 0.617 0.576 0.65 0.319 0.337 0.302 0.368 0.346 0.393

t = 10

bi1 bi2 bi3 bd1 bd2 bd3 bi1 bi2 bi3 bd1 bd2 bd3

β̂10 0.269 0.269 0.269 0.362 0.361 0.361 0.268 0.268 0.268 0.36 0.361 0.361

se.emp 0.005 0.005 0.005 0.006 0.006 0.006 0.003 0.003 0.003 0.004 0.004 0.004

rel.bias -0.103 -0.103 -0.103 0.208 0.204 0.204 -0.106 -0.106 -0.107 0.199 0.202 0.202

rel.bias.sd 0.493 0.493 0.495 0.671 0.667 0.66 0.298 0.297 0.298 0.4 0.401 0.399

Mean values of the maximum likelihood estimates β̂∗
t of b = 0.3 after t = 0, 5, and 10 years for the various degradation functions, with empirical (se.emp)

standard error and the relative bias β̂∗ . Simulations were performed with μ = -3, and sample sizes n = 75 and n = 200. Function b1 corresponds to a linear

change, b2 exponential change and b3 logarithmic change in marker levels over time.
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markers the log odds ratio estimates after ten years were

β̂∗
2,10 = 0.169 and β̂∗

3,10 = 0.182, corresponding to 15.5%

and 9% relative bias. The power of a test for association
using a ten degree of freedom chi-square test was above
90% even for a sample size of n = 250 cases and n =
250 controls.

Discussion
In this paper we quantified the impact of changes of
marker concentrations in serum over time on estimates
of association of marker levels with disease outcome in
case-control studies. We studied several monotone func-
tions (linear, exponential, logarithmic) of changes over
time that captured increases as well as decreases in mar-
ker levels. All functions were designed so that after ten
years the change in levels was a decrease or increase by
15%. This percent change was chosen based on observa-
tions from a small pilot study. Thus, for all different
functions that were used to model markers changes the
bias seen in the association parameter after ten years
was the same, but for intermediate time points the mag-
nitudes of biases differed, as the amount of change var-
ied for different functions. For a 15% increase in marker

levels, estimated log-odds ratios showed a relative bias
of -10%, and for a 15% decrease in marker levels, log-
odds ratios were overestimated, with a relative bias of
about 20%. We assessed single markers as well as multi-
ple correlated markers. The findings were similar,
regardless of correlations.
While one could avoid this problem by using fresh

samples, often, in prospective cohorts serum and blood
are collected at baseline and at regular time intervals
thereafter, and are used subsequently to assess markers
for diagnosis or to estimate disease associations in
nested case-control samples. This was the design that
was used by investigators participating in the evaluation
of biomarkers for early detection of ovarian cancer in
the Prostate, Lung Ovarian and Colorectal (PLCO) can-
cer screening study.
If a biased estimate of true effect sizes due to systema-

tic changes in biomarker levels is obtained in a discov-
ery effort, this could lead to under- or overestimation of
sample size for subsequent validation studies, and thus
either compromise power to detect true effect sizes, or

Table 4 Multivariate Marker Results: Three Markers are
associated with Outcome

X1 X2 X3

true b 0.3 0.2 0.2

perc.change 0.150 0.20 0.10

bi 1 2 3

t = 0

β̂∗
0 0.3 0.202 0.2

se.emp 0.131 0.13 0.13

rel.bias -0.001 0.012 0.002

rel.bias.sd 0.435 0.652 0.648

power† 0.996

t = 5

β̂∗
5 0.279 0.199 0.184

se.emp 0.122 0.126 0.118

rel.bias -0.068 -0.003 -0.078

rel.bias.sd 0.405 0.630 0.591

power 0.995

t = 10

β̂∗
10 0.261 0.169 0.182

se.emp 0.113 0.108 0.117

rel.bias -0.131 -0.155 -0.090

rel.bias.sd 0.376 0.538 0.584

power 0.995

Results for simulations based on a multivariate setting 10 with correlated
markers, with 250 cases and 250 controls, μ = -3, and r = 0.5. The first three
markers X1, X2, and X3 are associated with outcome. † The power is calculated
as the number of rejected null hypotheses over all simulations. Function b1
corresponds to a linear change, b2 exponential change and b3 logarithmic
change in marker levels over time.

Table 3 Multivariate Marker Results: A Single Marker is
associated with Outcome

uncorrelated correlated (r = 0.5)

n = 250 n = 500 n = 250 n = 500

t = 0

β̂∗
0 0.305 0.302 0.303 0.298

se.emp 0.091 0.064 0.128 0.093

rel.bias 0.018 0.005 0.009 -0.005

rel.bias.sd 0.304 0.213 0.426 0.309

power† 0.522 0.92 0.541 0.908

t = 5

β̂∗
5 0.285 0.281 0.282 0.278

se.emp 0.085 0.059 0.119 0.086

rel.bias -0.052 -0.064 -0.058 -0.072

rel.bias.sd 0.282 0.198 0.398 0.287

power 0.527 0.926 0.546 0.908

t = 10

β̂∗
10 0.266 0.263 0.264 0.261

se.emp 0.08 0.055 0.112 0.08

rel.bias -0.114 -0.124 -0.121 -0.13

rel.bias.sd 0.266 0.185 0.372 0.268

power 0.532 0.929 0.55 0.91

Results for simulations based on a multivariate setting with 10 markers, where
only X1 is associated with disease outcome with true b = 0.3, and μ = -3.
Levels of X1 increases 1.5% per year. Simulations were performed with sample
sizes n = 250 and n = 500. † The power is calculated as the number of
rejected null hypotheses over all simulations.
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cause resources to be wasted. For example, for a case-
controls study with one control per case to detect an
odds ratio of 2.0 for a binary exposure that has preva-
lence 0.2 among controls with 80% power and a type
one level of 5%, one needs a sample size of 172 cases
and 172 controls. If the effect size is overestimated by
13%, leading to the biased odds ratio of 2.2, investigators
may wrongly select 130 cases and 130 controls for the
follow up study, causing the power to detect the true
odds ratio of 2.0 to be 0.68.
The impact of storage effects on the loss of power to

detect associations of multiple markers due to poor sto-
rage conditions was also assessed in [18], but no esti-
mates of bias were presented in that study.
If the amount of degradation is known from previous

experiments, one could attempt to correct the bias in
the obtained estimates before designing follow up stu-
dies. For a small number of markers changes in concen-
trations over time have been reported [4,15,19].
However, such information is typically not available in
discovery studies where one aims to identify novel mar-
kers. In addition, while many changes were monotonic
in time [14], the number of freeze-thaw cycles [10,19,20]
and changes in storage conditions can cause more dras-
tic changes. This also happened at the Medical Univer-
sity of Innsbruck, where storage temperature changed
from -30°C for samples stored until 2004 to -50°C for
samples stored and collected after 2004.
For investigators interested in validating new markers

prospectively, a small pilot study that measures levels of
marker candidates identified in archived samples again
in fresh samples to obtain estimates of changes in levels
may help better plan a large scale effort.
We assumed that the degradation was non-differential

by case-control status. However, it is conceivable that
degradation in serum from cases is different than those
in serum from controls. While it would be interesting to
assess the impact of differential misclassification, it is
difficult to obtain realistic choices for parameters that
could be used in a simulation study.
In summary, our results provide investigators planning

exploratory biomarker studies with data on biases due
to changes in marker levels that may aid in interpreting
findings and planning future validation studies.

Conclusion
The increase or decrease in markers measured in stored
specimens due to changes over time can bias estimates
of association between biomarkers and disease out-
comes. If such biased estimates are then used as the
basis for sample size computations for subsequent vali-
dation studies, this can lead to low power due to overes-
timated effects or wasted resources, if true effect sizes
are underestimated.

Additional material

Additional file 1: Univariate Marker Results for b = 0.5, b = 1, and b
= -0.3. Mean values of the maximum likelihood estimates β̂∗

t of b =
0.5, b = 1, and b = -0.3 after t = 0, 5, and 10 years for the various
degradation functions, with empirical (se.emp) standard error and the
relative bias of β̂∗ . Simulations were performed with μ = -3, and
sample sizes n = 75 and n = 200. Function b1 corresponds to a linear
change, b2 exponential change and b3 logarithmic change in marker
levels over time.
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