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Abstract

Background: Drug discovery typically starts with the identification of a potential target that is then tested and
validated either through high-throughput screening against a library of drug compounds or by rational drug
design. When the putative target is a protein, the latter approach requires the knowledge of its structure. Finding
the structure of a protein is however a difficult task. Significant progress has come from high-resolution techniques
such as X-ray crystallography and NMR; there are many proteins however whose structure have not yet been
solved. Computational techniques for structure prediction are viable alternatives to experimental techniques for
these cases. However, the proper validation of the structural models they generate remains an issue.

Findings: In this report, we focus on homology modeling techniques and introduce the H-factor, a new indicator
for assessing the quality of protein structure models generated with these techniques. The H-factor is meant to
mimic the R-factor used in X-ray crystallography. The method for computing the H-factor is fully described with a
demonstration of its effectiveness on a test set of target proteins.

Conclusions: We have developed a web service for computing the H-factor for models of a protein structure. This
service is freely accessible at http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor.

Background

Structure-based drug design relies on the concept of
“druggability” which is used to describe proteins that
possess structures that favour interactions with a drug-like
chemical compound. Many “druggable” proteins (as identi-
fied from their structures) however are not drug targets, as
binding does not always guarantee therapeutic activity. To
predict if a “druggable” protein can be a target requires
knowledge of its structure, of its dynamics, and of all
regulatory mechanisms that control its expression and
function. Ultimately, the knowledge of a high-resolution
structure for the protein is essential, an information that is
not yet available for many proteins. X-ray crystallography
and NMR remain the experimental techniques of choice to
acquire this knowledge; there are many proteins however
that are difficult to crystallize or to purify to the level
requested by these techniques. For these proteins,
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computational structure prediction methods are con-
sidered a viable alternative.

In silico protein structure prediction techniques fall
into two categories: the ab initio folding methods and
homology modelling. Both techniques routinely yield
astounding results but do require caution, as models
need to be thoroughly validated prior to use. Because
the quality of models tends to be highly dependent of
the available experimental data, tools, protocols and
skills of the operator, validation metrics are needed to
safeguard their usage. In this study, we focus on
homology modelling, following our previous study where
we reviewed the common practices in homology model-
ling of proteins and provided a set of guidelines for
building better models [1]. Homology modelling predicts
the structure of a protein exploiting the knowledge of a
homologous protein whose structure is known. Its
general strategy for predicting the structure of a target
protein proceeds through a canonical seven-steps pro-
cedure: (1) Identify the template proteins that share
structural similarity to the target; (2) Align the target
sequence with the templates sequences; (3) Build a single
framework of spatially aligned template structures and

© 2012 di Luccio and Koehl; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor
mailto:eric.diluccio@gmail.com
http://creativecommons.org/licenses/by/2.0

di Luccio and Koehl Journal of Clinical Bioinformatics 2012, 2:18
http://www.jclinbioinformatics.com/content/2/1/18

assimilate the target protein backbone with this framework;
(4) Build the missing backbone elements (loops) not repre-
sented in the template framework; (5) Build the target side
chains; (6) Refine the model in order to minimize unrealis-
tic contacts and strains; and (7) Evaluate the final refined
model for physical tenability.

Several homology modelling programs such as MODEL-
LER [2], SegMod/ENCAD [3], Swiss-model [4], 3D-Jigsaw
[5], BUILDER [6] and Nest [7] are commonly used to
generate models in addition to online portals such as the
Protein Structure Initiative (PSI) model portal or Swiss-
Model Repository [8]. One of the drawbacks of using
automated model-building programs is the lack of human
interaction to detect possible anomalies that may render
the model inaccurate or wrong. In our previous study, we
made the demonstration of the dramatic effect of a single
error in the sequence alignment by a single shift of one
amino acid leading to a distortion of 3.8 A in the backbone
models [1]. Such distortion is sufficient to introduce
significant bias in a binding site of an enzyme for
instance, rendering any virtual ligand screening hopeless.

Difficulties in evaluating the correctness of models and
specifically, the lack of cross validation indicators such as
the R-factor and R-free in X-ray crystallography, hamper
the proper use of homology modelling [9]. The quality
assessment of models has been the focus of numerous
studies and various algorithms exist with scoring functions
based on statistical potentials [10], local side-chain and
backbone interactions [11], residue environments [12],
packing estimates [13], solvation energy [14], hydrogen
bonding, and geometric properties [15]. In addition, the
proper stereochemistry of models can be assessed by com-
monly used programs such as Procheck or Whatlf [16,17].
Despite all these methods, the homology modelling com-
munity still lacks a simple and easy to use indicator which
gives an unambiguous feedback on how the final model, or
family of models, reflects the data that were used in the
modelling process, similar to the couple R-factor/R-free for
X-ray crystallography. For that purpose, we introduced a
new indicator for assessing the quality of homology models,
namely the H-factor, that mimics the R-factor in X-ray
crystallography [1] (Figure 1). This short report is a
follow-up of this original work. In it, we provide a new
description of the strategy used to compute the H-factor
and describe new test cases that illustrate its effectiveness.

Computational strategy

The H-factor combines information of four scoring
functions that evaluates (1) the template structure(s)
(based on the corresponding PDB files); (2) the sequence
alignment between the template(s) and the target
sequences; (3) the structural heterogeneity of the models
built; and (4) the structural neighborhood within protein
families (Figure 1).
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Score (1): Secondary structures analysis

The scoring function (1) analyses the discrepancies between
the secondary structure prediction for the target obtained
with the program psipred [18,19] and the actual secondary
structures of the template framework computed with the
program stride [20]. The corresponding score takes into
account the confidence factors reported by psipred:
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The sum is computed over all positions in the
sequence alignment between the target and template, N is
the length of the sequence alignment, p is the secondary
structure prediction of the target at position i, ¢(i) is the
confidence factor reported by psipred for the secondary
structure prediction at position i and s is the secondary
structure type observed at position i in the template
structure reported by stride. The offset coefficients a and
b are set to 1.3 and 0.9, respectively, to ensure that score
(1) has values between 0 and 10.

Score (2): Evaluation of the sequence alignment

The function (2) scores the identity between the sequence
of the target and the sequence of the template framework
where N is the length of the sequence alignment.
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Score (3): Measurement of the heterogeneity of generated
models

The score (3) is designed to measure the heterogeneity
of a set of generated models, which may be induced by
either an improper or remote template. It is computed
using all the models M;, as well as the corresponding
average model, MA, whose atomic coordinates are the
averages of the corresponding coordinates in the models.
The function (3) then reports the average cRMS
between each model and the average model, where the
cRMS is computed over the Ca atoms only. The average
cRMS is then transformed linearly such that the final
score is between 0 and 10:

> cRMS(M;, MA)
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Figure 1 Flowchart for computing the H-factor. A. The scoring functions (1) and (2) are sequence-based. The score (1) compares the
secondary structure prediction for the target sequence with the actual secondary structure assignment of the template protein. As an example,
an extract of a sequence alignment between a template and a target is represented. The secondary structures of the template are indicated
underneath the sequence of the template (C: coil, H: helix). Above the sequence of the target is indicated the secondary structure prediction for
the target along with its confidence factor returned by PSIPRED. Score (2) evaluates the sequence similarity between the target and template
sequence. B. The scoring functions (3) and (4) evaluate the structural models: score (3) quantifies the structural diversity among the models, while
score (4) identifies the pfam domains in the target protein, collects the structures of these domains from the models to be tested, and compares
these structures with those observed for the same domains in the PDB.

J

n is the number of models. The offset coefficients a
and b are chosen such that average RMS values of 0.1
and 7 A correspond to scores of 1 and 10, respectively;
the corresponding values are a = 1.3 and b = 0.87.

Score (4): Assessment of the structural integrity of functional
domains

Score (4) is designed to specifically evaluate the quality of
all functional domains in the model with respect to avail-
able experimental structures deposited in the protein data

bank (PDB). First, the various domains in the sequence are
identified using HMMER [21,22] and the pfam profiles
database as a reference [23], The average model MA is then
broken down into fragments corresponding to these
domains. Each fragment is compared to the structures of
the same domain found in proteins whose structures have
been deposited in the PDB. A maximum of 5 fragments is
considered (the top 5 HMMER search results). To
minimize the numbers of false positive we set an E-value
cut-off of 1.0e-10 for hmmsearch. The score (4) is then the
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average cRMS distance between the fragments and their
counterparts in the PDB:

zm: En: cRMS (MA,, Dy;)
d=1 i=1

scored =a = +b
mn

m is the number of functional domains identified in
the target sequence, MA, is the structural fragment
extracted from the average structure MA corresponding
to the domain d, # is the number of domains homolo-
gous to domain d found in PDB structures, and Dy; is
the i-th possible structure of the domain homologous to
d. The offset coefficients a and b have been chosen such
that average RMS values of 0.1 and 7 A correspond to
scores of 1 and 10, respectively; the corresponding
values are a = 1.3 and b =0.87. This enforces that score
(4) is between 0 and 10. Note that if this procedure does
not find an equivalent domain with a known structure
for a fragment, the fragment is ignored; if no domains
are found for all fragments, score (4) is ignored.

The H-factor score is simply the average of scores (1, 2,
3, 4). The H-factor computation is accessible online at
http://koehllab.genomecenter.ucdavis.edu/toolkit/h-factor.

Results and discussion

Target proteins of the CASP experiments (http://
predictioncenter.org) are ideal test cases to benchmark
the H-factor. In this short report, we have chosen targets
from both the CASP7 and CASP9 experiments to demon-
strate the usefulness of the H-factor as well as to highlight
its sensitivity in identifying anomalies within homology
models. The first CASP7 target chosen (T0295) is consid-
ered “easy”, while the second and third targets (T0522 and
T0521) are more difficult cases for homology modelling
(Table 1 and Figure 2). The fourth target (T0544) is the
most difficult test case we have considered due to the lack
of related templates available in the protein data bank.

For each CASP target considered, the best template
structures were identified using fold recognition techni-
ques. The top template for each target was then selected
according to the CASP 7 & 9 analyses of every possible
template for each target. We aligned the sequence of the
target with its template(s) using Clustal W [26], with the
Gonnet250 matrix to define the substitution score and
default settings for gap penalties. This corresponds to a
simple pairwise sequence alignment. We used MODELLER
9v5 [2], with the “automodel” settings to generate 20
models for each of the four targets. As the H-factor focuses
only on the Ca-backbone, we did not attempt to improve
the prediction of the sidechains.

The CASP7 target T0295 is an “easy” modeling case.
It has a very close homologue (sequence identity 46%)
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whose structure has been solved at high resolution (PDB
code: 1ZQ9, 1.9 A resolution) and the template sequence
covers its whole sequence. Using default settings, the
non-specialist would have no difficulties in generating
“good” models of T0295. The average cRMS (based on
Ca only) between the T0295 models and the actual
experimental X-ray structure for target T0295 (available in
the PDB as 2HIR; resolution 1.89 A) is 1.67 A, indicating
models of good quality. The corresponding H-factor for
these 20 models is 19%, i.e. a very good score (by defin-
ition, H-factors vary between 0% and 100%, with 0% being
good and 100% being bad). The good qualities of the
T0295 models are highlighted by each scoring function
included in the H-factor (Table 1). The secondary structure
prediction for T0295 matches well with the actual second-
ary structure of its framework (1ZQ9), yielding a value of 1
for score (1). The sequence alignment between T0295 and
17Q9 is deemed good, with a value of 1.9 for score (2).
The 20 models generated showed little structural disper-
sion with a corresponding value for score (3) of 1.3. Score
(4) compared the structure of this domain in the models
generated for T0295 and the structures of the same
domain found in all five proteins listed above. It detected
fluctuations between these structures, leading to a score of
3.8. The score (4) is relatively higher than the other scores;
it does remain however within a range that indicates a
good match. Note that the overall H-factor value is 19%. In
comparison, a R-factor of 20% is typically observed for fully
refined X-ray structures around 2 A of resolution, i.e. for a
good X-ray structure.

To further benchmark the sensitivity of the H-factor,
we deliberately introduced a single shift in the alignment
between the sequence of T0295 and the sequence of its
template 1ZQ9 (see our previous report [1]). The corre-
sponding models generated by MODELLER show struc-
tural diversity in the loop region near the shift. Score (3)
captures this structural diversity within a set of models.
It leads to the H-factor being raised from 19% to 21%
(see Table 1). However, score (2) could not detect a
single position shift in the alignment. The H-factor is
therefore capable of detecting backbone deviation due to
modeling errors, the same way the R-factor does.

The CASP9 target T0522 is a more difficult modeling
case. The template sequence has low similarity with the
target sequence and this is highlighted by the scoring
function (2), which returns a value of 6.2 (out of 10)
(Table 1). Note that the score (2) is not a direct meas-
urement of the quality of the sequence alignment. It is
designed to quantify the differences between the two
sets of sequences: if these differences are small, the
model is expected to be good, while if the differences are
large the models should be considered with caution. The
overall H-factor for the models generated for T0522 is
37%. This mid-range value indicates that caution should
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Table 1 Comparison between the H-factor, cRMS, DOPE and QMEAN scores

CASP Scoring function (a) H-factor cRMS % ID DOPE QMEANnorm
targets ) 2 3) @ (%) (A) (b) () (d) (e)
T0295 1.0 19 13 38 19 1.67 46 -33940 0.735
T0295* (f) 1.0 1.9 19 38 21 1.71 46 -24317 0.196
T0522 20 6.2 1.5 50 37 2.19 38 -14185 0.771
T0522* (f) 20 69 20 52 40 271 38 -12687 0681
T0521 4.2 7.5 34 54 51 4.09 24 -18484 0.695
T0521* (g) 6.1 76 36 6.8 60 4.24 23 -15968 0.508
T0544 7.0 83 4.0 83 69 6.11 17 -10652 0.192

(a) The four scoring functions included in the H-factor measure the quality of the secondary structure prediction (score (1)), the diversity of the sequence
alignment (score (2)), the structural diversity of the models generated (score (3)), and the similarity of the predicted structures for the functional domains in the
target, compared to the structures of the same domains found in the PDB (score (4)).

(b) Average cRMS (over Ca) between the 10 different models generated and the actual experimental structure for the target.

(c) Sequence identity between the target sequence and the template sequence.

(d) DOPE scores from MODELLER [24].

(e) QMEAN normalized score [25].

(f) T0295" and T0522* are experiments in which the sequence alignment between the target and its framework has been deliberately modified with a shift of a
single amino acid in the sequence alignment (see text for details).

(g) T0521% is an experiment in which a less suitable template has been deliberately chosen compared to T0521 (see text for details).

Experimental structure Models

PDB 2L3W

Figure 2 Comparison of experimental structures with their respective homology models. Left side panel: experimental X-ray structures of
selected CASP7 (A) and CASP9 (B, C, D) targets. Right side panel structural overlay of ten models for each selected CASP target build with the
closest available template in the protein data bank. A & B depicts “easy” modelling cases, while C & D are dramatically more challenging.
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be used when interpreting or using these models.
Indeed, the average cRMS between these models and the
actual structure of T0522 (available in the PDB in the
file 3NRD) is 2.19 A, i.e. reflecting a medium-resolution
agreement (Figure 2).

The main difficulty encountered in modeling T0522 was
the proper sequence alignment between the template and
the target as the sequence of T0522 is somewhat remote
from its chosen template (PDB 30HE). In modeling cases
similar to T0522, the non-specialist may have difficulties
in either generating a proper sequence alignment or asses-
sing critically the end-result. To further demonstrate the
effects of errors induced by improper sequence align-
ments, we deliberately introduced a one amino-acid shift
in the alignment resulting in the H-factor rising from 37
to 40%. The score (2) jumped from 6.2 to 6.9 along with
the score (3) from 1.5 to 2.0 highlighting an increase in
model heterogeneity. The overall increase in errors is
captured by an H-factor of 40% (raising from 37%), which
indicates that the models contain errors and may deviate
notably from the experimental structure.

The CASP9 target T0521 is a significantly more difficult
modeling case compared to T0522. The main difficulty
lies in identifying the “best” template. Only two remotely
homologous structures were detected, with PDB codes
3PM8 and 2AAO and sequence identities of 24% and
23%, respectively. The non-specialist may face a problem
choosing the template in addition to generating the best
possible sequence alignment. To illustrate the structural
errors induced by choosing a remote template, we built
two sets of models for T0521 with either 3PM8 or 2AAO
as template and assessed the errors with the H-factor
(Table 1). In both cases, the sets of T0521 models contain
significant errors in the secondary structure matches
between the template and the target (score (1)) and the
quality of the sequence alignment, score (2). In addition,
score (4) indicates that the fold of the functional domains
deviates from the available experimental structures
deposited in the PDB. Overall the H-factors of these two
sets of T0521 models are 51% and 60%, a good indication
that these are incorrect models that do not represent the
native structure of T0521 (Table 1). Indeed, the corre-
sponding average cRMS values between the models
generated with the templates 3PM8 and 3AAO and the
native structure for T0521 are 4.09 and 4.24 A, respect-
ively highlighting gross differences with the native struc-
ture (Figure 2).

The CASP9 target T0544 is the most difficult test case
we have considered due to the lack of related template
available in the PDB. A database search over all
sequences of proteins whose structure is known identifies
a unique template, 3BRJ, with a low sequence identity of
17% (Table 1). In this specific case, all four scores
reported high values (7.0, 8.3, 4.0 and 8.3 for scores (1),
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(2), (3) and (4), respectively). The overall H-factor is 69%,
a value that should raise serious concerns about the quality
of these models. The average cRMS between these models
and the actual structure for T0544 (PDB 2L3W) is 6.1 A,
indicating that the models are very poor approximations of
the native structure (Figure 2).

From the four test cases T0295, T0521, T0522 and
T0544, we conclude that the H-factor correlates well
with the quality of the models tested. The H-factor com-
putes the quality of models for protein structures based
on sequence information (score (1) and score (2)), as
well as based on structure information (score (3) and
score (4)). While the former is specific to homology
modeling, the latter can be used to assess the quality of
any sets of models. Although the H-factor and the R-factor
are mathematically unrelated, they have the same purpose:
to assess the quality of structures, either experimental or
computed from modeling experiments, where quality
refers to reflecting correctly the input data used to generate
these structures. The H-factor mimics the R-factor as it
provides a quality-index to follow in the process of build-
ing a model, the same way crystallographers monitor the
R-factor/R-free indexes during structures refinements. In
our previous study, we compared the H-factor results with
the experimental R-factor and R-free on a randomly
chosen subset of the PDB containing 445 structures with 6
or more identical chains solved by X-ray crystallography
[1]. The H-factor and R-factor are not linear correlated but
it remains that “good” R-factors (below 30%) correspond to
“good” H-factor values (below 45%) [1]. The H-factor
checks the diversity of the set of models generated for a
structure, as well as their similarities with the structures of
domains that share the same function, as defined by pfam.
High H-factor values may be caused by structures with
disordered loops or remote structural neighbors in the
PDB. It remains that, the H-factor recognizes experimen-
tally determined structures as being valid [1].

The statistical potential Discrete Optimized Protein
Energy (DOPE) measure model quality and has been
introduced in MODELLER v8 [24]. DOPE is a statis-
tical potential with an improved reference state that
accounts for the compact shape of native protein struc-
tures. The DOPE score is designed such that large,
negative scores are usually indicators of good models.
In their original study, Shi and Sali [24] found that the
accuracy of DOPE to asses a homology model improves
as the accuracy of the models improve. We observe a
similar behaviour for targets T0295 and T0295*
(Table 1). These two targets correspond to the same
protein and it is therefore possible to compare the
DOPE scores of their models. The model generates for
T0295% based on an incorrect alignment, has a much
lower DOPE score (-24317) that the model generated
with the correct alignment (T0295; -33940). Note that
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we cannot compare DOPE scores for proteins of differ-
ent sizes, as these scores are not normalized. DOPE
scores are therefore relative, and designed to pick a
“good” model among poorer models. DOPE scores do
not assess directly the quality of the model that is
picked, i.e. if it is likely to be similar to the actual struc-
ture. The H-factor is a better indicator in that respect.

QMEAN, which stands for Qualitative Model Energy
ANalysis, is a composite scoring function for homology
models that describes the major geometrical aspects of
protein structures as well as the agreement between the
predicted and calculated secondary structure and solvent
accessibility, respectively [25]. As such, it includes a term
similar to the score (1) of the H-factor, as well as terms
that assess different properties such as residue accessibility.
The score QMEANnorm is a normalised version of the
QMEAN score in which all terms are divided by the
number of interactions/residue in order to avoid a size-bias
of the score [25]. QMEANnorm scores vary between 0 and
1, with larger scores expected to correspond to better
models. Unlike the DOPE score, both the H-factor and
QMEANnorm scores allow for the comparison of proteins
of different sizes. The QMEANSscore is as effective as
PROSA or DOPE for detecting errors in a model that
result from errors in the sequence alignment between the
template and target protein: T0295* has a QMEANnorm
score of 0.196 while the score for T0295 is 0.735. Interest-
ingly, T0522 (0.771) has a more favorable QMEANnorm
score than the significantly accurate model generated for
T0295 (0.735) (Table 1). We have observed however that
the QMEANnorm score is prone to fail: some of the
erroneous models generated for the CASP target T0521
and T0522 have QMEANscores of 0.771 and 0.695,
respectively, meaning they are evaluated to be almost as
correct as the positive control T0295 (0.735). Unlike
QMEAN, the H-factor did detect that these models were
to be considered with caution. Because it analyzes a set of
models, we believe that the H-factor score is more robust
as an absolute measure of the quality of a model. It lacks
however the ability to discriminate among a set of models
generated for the same target.

These results emphasize the essential differences in the
nature of the ProSA, DOPE, QMEANnorm and H-factor
scores. ProSA, DOPE and QMEAN check the quality of a
model, independently of the context in which it was
generated. The H-factor on the other hand checks the
quality of a set of models with respect to a context that
includes for example the sequence alignment assessed
by the score (2). The modeler however should use these
differences to extend his/her assessment of the model
his/she generates. We believe that ProSA, DOPE,
QMEAN and H-Factor analyses are needed to provide a
better overview of the quality of models derived by
homology modeling.
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Model verification and validation in structure-based drug-
design: a case study
The epigenetic therapy of cancers is rapidly emerging as
an effective approach to chemotherapy as well as to the
chemoprevention of cancer and is the focus of intense
structure-based drug-design efforts. Histone lysine
methylation is one of the pivotal signaling pathways in
chromatin-regulatory mechanisms, amongst the array of
covalent histone modifications. Lysine histone methyl-
transferases (HMTases) are transcriptional regulators
that target specific lysines on H3 and H4, and can transfer
up to three methyl groups on histone tails [27]. Lysine
methylation or any of the other histone modifications can
have both activating and repressive functions in transcrip-
tional events. An increasing number of epigenetic modifiers
have been identified as oncogenes and implicated in the
onset of numerous cancers and associated with tumor
aggressiveness or prognosis. Reducing or modulating DNA
and/or histone epigenetic modifiers activity through specific
small molecules appears promising to help suppressing
cancer growth. Several high profile targets such NSD2/
MMSET has been identified; the structures of most of these
targets however remain unknown [28]. Thus, the epigenetic
therapy of cancers is still in its infancy due to the lack of
available structures for designing specific and selective inhi-
bitors. Epigenetic modifiers enzymes are usually large and
complex proteins with several functional domains such as
zinc-fingers and PWWP domains that are troublesome dur-
ing recombinant protein expression and purification for in-
stance. Several crystal structures of the catalytic domain
SET alone contributed to shed some light on the histone
lysine methylation mechanism. While these structures are
of significant interest from a standpoint of drug discovery,
they do not provide enough information for an effective
drug-design. Particularly, the catalytic SET domain of
several HMTase oscillates between an open and a close
conformation that are critical for the binding of specific
inhibitors. This oscillation mechanism has been described
for a few HMTase but a common mechanism has yet to be
found amongst the rather large and heterogeneous family
of HMTase [28,29]. In addition, the regulation of the
putative substrate specificity through the binding of protein
partners is not yet understood at the structural level. While
crystal structures of valuable drug-targets are being pur-
sued, the use of models in drug discovery is steadily in-
creasing to extend our understanding of histone modifiers.
Models of epigenetic modifiers utilized in virtual
ligand screening efforts have yielded mixed results and
only few high-affinity inhibitors have been reported so
far. The main obvious issue comes from the errors asso-
ciated with the models that prevent accurate ligand
screening. Errors in homology models can be alleviated
with a careful evaluation using the H-factor for instance.
In Figure 3, we illustrate the errors in homology modelling
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template PDB: 300l
77% sequence id.

H-factor: 18.1%

template PDB: 4FMU
47% sequence id.

H-factor: 29.4%

Figure 3 Case study: modelling of the SET domain of MMSET/NSD2 A. Structural overlay of a set of 10 models of NSD2-SET modelled using
PDB 300l (NSD1-SET) as a template. B. Structural overlay of a set of 10 models of NSD2-SET modelled using PDB 4FMU (SETD2-SET) as a
template. The models are represented as ribbons (top) and with the amino acid side-chains (bottom). The sequence identity between the

template and NSD2-SET is indicated along with the H-factor.

by comparing two sets of models for the catalytic domain
SET of human histone methyl transferase MMSET. The
crystal structure of the SET domain of NSD1 has been
recently solved and it is the ideal template to model its
close sibling NSD2-SET [30]. Modeling of NSD2-SET
based on the NSD1-SET structure is straightforward as
both share 77% sequence identity and are biochemically
very closely related (Figure 2-A). The structural overlay of
ten models build with Modeller v9.11 shows very little
backbone deviation highlighting the good match between
sequences and structural elements. This represents “a best
case scenario” for homology modeling where all the models
are highly homologous from the stance of Ca-backbone
deviations to the side chains positioning standpoint.
Although the crystal structure of NSD2-SET is unknown,
the tightly homologous models build with a H-factor of
18.1% tend to indicate a trustworthily set of models for
virtual ligand screening. The SET domain is the catalytic
region of NSD2 and the low observed deviations of both
the backbone and the side-chains increase the likelihood of
success in isolating small molecules inhibitors. Figure 3-B
describes the modeling of NSD2-SET with the second best
template available, the HMTase SETD2. The SET domains
of NSD2 and SETD2 share 47% sequence identity together

and both have the same biological function at the chroma-
tin (methylation of the same histone mark H3K36) which
may justify the use of SETD2-SET (PDB 4FMU) as a mod-
eling template. In addition, the choice of SETD2-SET can
possibly be justified as it provides a model for NSD2-SET
in a different conformation. Models build with PDB 4FMU
as a template have a H-factor of 29.4% and are significantly
more heterogeneous than models build with PDB 300l as
a template. The overall backbone traces differ notably
between Figure 3-A and 3-B. It is clear that despite falling
into the category of good template (47% sequence identity,
same family and same biological function), PDB 4FMU
most likely differ substantially from the structure of NSD2-
SET and a H-factor of 29.4% captures clearly the differences
between the two sets of models (Figure 3-A and 3-B). The
set of models for NSD2-SET build with PDB 4FMU cannot
be use for accurate analysis such as virtual ligand screening.
Drug discovery relies on finding small molecules that
should satisfy the empirical Lipinsky rule of 5 in order to
maximize bioavailability and drug-delivery. Notably,
molecules should have a molecular weight less than
500 Da, low numbers of hydrogen bond donors and
acceptors along with a low number of rotatable bonds. To
satisfy these stringent requirements while being biologically
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relevant, the models or structures used in virtual ligand
screening should be accurate. A mere Ca-backbone or side
chain deviation or >1 A would dramatically reduce the like-
lihood of finding biologically active molecules. The models
in Figure 3-B illustrate this point.

Conclusion

The H-factor does not provide a universal solution to
the problem of asserting the quality of a model generated
by homology modeling. Our current implementation does
not take into account multiple templates, rather only one
single framework. The structural components included in
the H-factor (i.e. scores (3) and (4)) are based on the
backbone of the models, and do not take into account
sidechains and possible errors in their modeling. Second,
the scoring function (3) of the H-factor measures the
heterogeneity of a set of models generated with the same
input. It means, that the H-factor cannot be computed on
a singular model. In homology modeling the heterogeneity
of models can be seen as a quality indicator and building
only one single model is not recommended. One of the
originalities of the H-factor is the scoring function (4). It
has been designed to evaluate the biological relevance of
the models by comparing the model conformations of all
the functional domains in the protein considered with the
existing siblings deposited in the Protein Data Bank.

While we acknowledge that there is room for improve-
ment, it remains that the H-factor is a first step in the
direction of validating homology models for the biologists
in addition to existing methods, as proved in the examples
shown above. The four independent scoring functions (1, 2,
3, 4) provide the biologists with clear and easy to follow
indicators to optimize or correct their models.
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