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Abstract

Background: Second generation RNA sequencing technology (RNA-seq) offers the potential to interrogate
genome-wide differential RNA splicing in cancer. However, since short RNA reads spanning spliced junctions cannot
be mapped contiguously onto to the chromosomes, there is a need for methods to profile splicing from RNA-seq
data. Before the invent of RNA-seq technologies, microarrays containing probe sequences representing exon-exon
junctions of known genes have been used to hybridize cellular RNAs for measuring context-specific differential
splicing. Here, we extend this approach to detect tumor-specific splicing in prostate cancer from a RNA-seq dataset.

Method: A database, SPEventH, representing probe sequences of under a million non-redundant splice events in
human is created with exon-exon junctions of optimized length for use as virtual microarray. SPEventH is used to
map tens of millions of reads from matched tumor-normal samples from ten individuals with prostate cancer.
Differential counts of reads mapped to each event from tumor and matched normal is used to identify statistically
significant tumor-specific splice events in prostate.

Results: We find sixty-one (61) splice events that are differentially expressed with a p-value of less than 0.0001 and
a fold change of greater than 1.5 in prostate tumor compared to the respective matched normal samples.
Interestingly, the only evidence, EST (BF372485), in the public database for one of the tumor-specific splice event
joining one of the intron in KLK3 gene to an intron in KLK2, is also derived from prostate tumor-tissue. Also, the 765
events with a p-value of less than 0.001 is shown to cluster all twenty samples in a context-specific fashion with
few exceptions stemming from low coverage of samples.

Conclusions: We demonstrate that virtual microarray experiments using a non-redundant database of splice events
in human is both efficient and sensitive way to profile genome-wide splicing in biological samples and to detect
tumor-specific splicing signatures in datasets from RNA-seq technologies. The signature from the large number of
splice events that could cluster tumor and matched-normal samples into two tight separate clusters, suggests that
differential splicing is yet another RNA phenotype, alongside gene expression and SNPs, that can be exploited for
tumor stratification.
Background
Until recently, the extent of RNA diversity resulting
from alternative splicing had been consistently underes-
timated. In the early 90s, researchers projected that only
5% of the human genes were alternatively spliced based
on PCR methods, which was revised upward to 35% by
the end of the decade using mining EST database [1,2].
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The estimate rose to 74% in 2003 based on exon-exon
junction microarrays [3] and then all the way to 94% in
2008 by the use of second generation RNA sequencing
(RNA-seq) [4]. What was once the exception has now
become the norm [5], a fact that may be especially sig-
nificant given that the human genome contains only a
few more genes than C. elegan. As highlighted by the
ENCODE project [6], RNA splicing is complicated and
has called into question the very definition of the gene
as a unit of heredity. Since the majority of human genes
contain multiple exons and express at least two splice
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Table 1 Shows the total number of junctions predicted
by SPEventH and Topaht for the top ten most highly
expressed genes in T11

Genes Number
of exons

SPEventH
predicted/
represented

Tophat Gene
expression

KLK3 5 21/38 0 210099

KLK2 5 23/36 0 135249

MYH11 42 24/115 21 56872

EEF2 15 43/104 0 38561

MSMB 4 21/39 5 25208

LTF 17 15/71 1 36365

FLNA 48 71/151 0 27648

SRRM2 15 34/60 0 23211

ACPP 11 15/34 2 21250

NDRG1 16 43/131 0 20155

MLPH 15 28/72 1 19556

ACTG2 8 17/35 5 18356

SPEventH predictions in column 3 are also augumented with the total number
of events represented in the SPEventH database for the respective gene.
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products, gene expression cannot be fully meaningful
without considering alternative splicing as well.
It is known that alternatively spliced transcripts of a

given gene can code for protein variants with varied
biological functions or cellular localizations. Human spli-
ceosome is a complex dance between trans-acting and
cis-acting signatures. Regulation, disruption and muta-
tions in any one of these elements has the potential to
provide tumor cells with selective advantage during can-
cer evolution. Numerous gene-by-gene studies have
linked splicing to cancer. Genome-wide profiling of spli-
cing in cancer using microarray technologies has
revealed that differential splicing may play a key role in
cancer progression and metastasis. A comprehensive re-
view of systematic profiling of splicing in various cancer
types using genome-wide microarray technologies sug-
gest that differential exon inclusion or skip events may
drive cancer and can be used as biomarkers in cancer [7].
The exposure of the entire RNA content within sam-

ples by RNA-seq technologies, including novel splice
isoforms, has encouraged the development of methods
for de novo identification of splice events expressed in
samples [8-10]. The use of these de novo methods has
been attractive, because a large number of splice events
are believed to be yet unidentified. More recently, these
methods are used to discover disease-specific splicing
from RNA-seq data [11,12].
Genome-wide profiling of alternative splicing is not

new. Before the invent of RNA-seq technologies,
genome-wide profiling of RNA splicing in biological
samples included exon arrays [13], splice junction arrays
[14,15], and genome-wide tiling arrays [16]. Use of these
technologies to profile known splicing events in various
biological contexts has already revealed the importance
of splicing in cancer research. A recent review of
genome-wide profiling of splicing in cancer using vari-
ous microarray platforms suggests that splicing in cancer
is prevalent, regulated and that novel therapeutic strat-
egies are emerging [17,18].
The success of microarrays in profiling known splicing

in cancer can be extended to identifying tumor specific
splicing events in reads from RNA-seq using virtual
microarray experiments. In such an experiment, short
RNA reads from RNA-seq can be considered virtual
equivalent of cellular RNA, in silico mapping of reads
can be considered virtual equivalent of hybridization and
the sequences of exon-exon junction probes equivalent
of virtual microarray platform. Hence, a non-redundant
reference database of known splice junctions can be
used to directly map RNA reads to detect and measure
expression levels of known splice events. Although such
an approach is limited to detection, by augmenting the
database with predicted junctions, one could also infuse
discovery into this approach [4].
Here we have profiled less than a million known and
predicted splice events to identify tumor-specific splicing
in prostate tumor using a RNA-seq dataset of matched
tumor-normal from ten individuals downloaded from
NCBI public repository.

Results and discussion
Validation of SPEventH based prediction
Since majority of the human genes are multi exon genes,
a large number of constitutive splice junctions for highly
expressed genes should be expressed irrespective of the
splice variants. Methods to predict splice events can be
validated by its ability to predict constitutive junctions
for highly expressed genes within a sample. To assess
the ability of SPEventH to detect constitutive junctions
of highly expressed genes, we used ten most highly
expressed genes from sample T11 (SRX022067). Table 1
lists the total number of exons in these genes and the
number of junctions predicted by both methods SPE-
ventH and Tophat. SPEventH has been able to predict
majority of the constitutive junctions. On the other
hand, to our surprise, Tophat failed to detect constitu-
tive junctions for any of these genes. Even for MYH11
gene, for which Tophat predicted many junctions, the
junctions are found inconsistent with known exon loca-
tions for this gene (Figure 1).
To test the ability of SPEventH in identifying differen-

tial splicing in cancer, we used the splice variants of the
gene CD44, which are the most extensively studied for
differential splicing in cancer. It is well known that a
short variant, CD44s, is ubiquitously expressed in major-
ity of the normal human tissues and a long variant,



Figure 1 Splice junctions predicted by both SPEventH and Tophat for the gene MYH11 gene in T11 sample.
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CD44v1-10, is specific to cancer tissues [19,20]. Short
RNA reads from several normal human tissues including
brain, liver, heart, skeletal muscle, colon (SRP000302)
and matched tumor-normal samples from OSCC
(SRP002009) are mapped onto SPEventH using bowtie
allowing for two mismatches. At the coverage of sequen-
cing in these datasets, CD44 is not expressed in brain
and liver (Tracks A and B of Figure 2). However, in
the normal tissues, where the gene is expressed, for
example in heart, skeletal muscle, colon and normal
OSCC, the wild type variant (CD44s) represented by
the probe JHS30395041 is expressed. The Track G
of Figure 2 for OSCC tumor sample, the only tumor
sample in this Figure, shows expression of the long
form CD44v1-10 represented by several probes
(JHS30395033, 065, 090, 100, 116, 118, 128, 141). Inter-
estingly, while the variant CD44v1-10 is missing in
OSCC normal but expressed in the respective tumor,
the CD44s variant is not expressed in OSCC tumor al-
though it is expressed in the respective normal. To our
knowledge, this is the first report of tumor-specific dif-
ferential splicing of CD44 gene in oral squamous cell
carcinoma.

Comparison of SPEventH and Tophat predictions
The numbers of splice events in SPEventH mapped by
RNA reads from the twenty samples used in this study, as
listed in Table 2, range from 75,000 to 150,000 (Table 3,
Column 2). Comparable numbers of splice events are
also predicted by Tophat in all twenty samples (Table 3,
Column 3). Also, twenty to thirty percent (20-30%) of the
splice events in each sample are found to be predicted by
both the methods after normalizing for chromosomal
coordinates (Table 3, column 4).
As shown in Figure 3, roughly 40,000 splice events

from SPEventH are commonly mapped by all ten tumor
samples. Majority of the common events must be consti-
tutive splice junctions of genes expressed in a prostate-
specific or tumor-specific manner, which are expected
to be expressed irrespective of the splice isoforms. In
Figure 3, although the number of common junctions
among tumor samples appear to saturate at 40,000
events after addition of 5th or 6th sample, the number of
events common to all twenty samples including the ten
normal drops to ~20,000 (not shown). This drop is sug-
gestive of the presence of both tumor-specific constitu-
tive and alternative splice events. In comparison, splice
events common to all ten tumor samples predicted by
Tophat is only 404 (Figure 3), which drops to only 30
events when all twenty samples are compared. This
is despite the fact that 25-40% of Tophat events and
SPEventH events are found common in individual sam-
ples (Table 3, column 4). This could be because Tophat
attempts to predict all junctions for each sample de novo



Figure 2 CD44 splice isoforms, CD44s (JHS30395041) and CD44v1-10 (JHS30395033), in normal and tumor samples respectively as
sown on the UCSC genome browser. Tracks from top are for normal brain, normal liver, normal heart, normal skeletal muscle, normal colon,
matched normal from OSCC patient, and matched tumor from OSCC patient.

Table 2 Lists the accession IDs of the 20 samples from 10
individuals used in this study along with read coverage

Samples Accession ID Depth

T11/N11 SRX022067/ SRX022085 21993400/29523906

T13/N13 SRX022068/ SRX022086 31061605/29495276

T15/N15 SRX022069/ SRX022087 32535354/28473963

T19/N19 SRX022072/SRX022088 32598639/23807013

T23/N23 SRX022073/ SRX022089 30409693/29323060

T02/N02 SRX022060/SRX022080 10751725/8174610

T03/N03 SRX022061/SRX022081 8100448/8011774

T06/N06 SRX022063/SRX022082 13137600/8002207

T08/N08 SRX022065/SRX022083 8338185/5278786

T09/N09 SRX022066/SRX022084 7551225/5630881
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and many of the constitutive junctions may be predicted
in some samples but missed in others. All further ana-
lysis is carried out using SPEventH approach.
Prostate cancer specific splicing from SPEventH
Figure 4 shows the volcano plot of SPEventH-based
analysis using R-package for the 20 matched tumor-
normal samples from the ten individuals. Table 4 lists
the 61 splice events that are up- and down regulated in
a tumor-specific fashion with a p-value of <0.0001 and a
fold change of > 1.5. Forty-one of these 61 events are
validated by measuring base level expression on either
side of the junctions as shown in Table 4, Column 7.
Figure 5 shows base level expression of one of the junc-
tions from the gene PPP3CA across all 20 samples.



Table 3 Shows the number of exon-exon junctions on
which reads were uniquely mapped from each sample
listed in column 1 by the two methods SPEventH
(Column 2) and Tophat (column 3)

Sample SPEventH Tophat Common

T02 117076 120864 43891

T03 97898 101032 36109

T06 118972 145448 41827

T08 99557 101261 38229

T09 86033 103793 31510

T11 134996 135378 26818

T13 167250 166213 26758

T15 164348 192518 28383

T19 168447 198934 27790

T23 164983 188546 30043

N02 102874 92880 39396

N03 97750 92234 36411

N06 89427 99376 31770

N08 75131 65474 26844

N09 78205 68111 29759

N11 153994 155169 24175

N13 155390 175640 26132

N15 148237 167555 26825

N19 151464 149138 36617

N23 154390 157457 30576

Last column lists the number of junctions commonly predicted in each sample
by both methods.
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Table 5 lists PCR primers including amplicon size for
all events listed in Table 4 except for those that had no
evidence in public transcriptome databases.
Figure 3 Histogram showing the decline of Tophat and SPEventH hits
The p-value cutoff used to generate Table 4 is rather
very stringent. In order to cross check the significance
of the 765 events with p-values of less than 0.001 and a
fold-change of >1.5, the twenty samples are clustered
using RPKM values for these events in all 20 samples.
As shown in Figure 6, there are three major clusters in-
cluding two clusters representing tumor and normal.
The normal cluster includes eight (8) normal samples.
The tumor cluster includes seven (7) tumor samples
and one normal sample of low sequence coverage.
All the samples in the outlier cluster are low sequence
coverage.
One of the challenges in the identification of tumor-

specific splice variant is to filter out splice events from
differentially expressed genes in tumor. To identify such
splice events among the 765 events, tumor-specific gene
expression for the corresponding genes across the
twenty samples are computed. Splice events from genes
displaying tumor-specific expression levels with p-values
<0.01 are considered as resulting from overall gene
expression changes. Out of the 765 events a total
of ninety-three (93) events are found to be belonging
to genes that are considered differentially expressed.
Figure 7 shows results from clustering the ten samples
with high sequence coverage using the RPKM of the 672
remaining splice events. Figure 7 shows two tight clusters
of normal and tumor samples. Note that since all the
samples in the outlier cluster in Figure 6 are samples with
low coverage, only the ten samples from the five indivi-
duals with high sequence coverage are used.
In order to computationally validate the findings with

samples from other individuals, not included during the
discovery process, we profiled splicing in another RNA-
seq dataset independently generated by another group
as we incrementally add tumor samples one by one.



Figure 4 Volcano plot for p-value versus fold change computed
using RPKM values for each gene for all 20 samples including
10 matched tumor and normal samples calculated using
normal as control.
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(SRP003611) [21]. Two splice events in genes PPP3CA
and SLC20A2 are found to be significantly up- and
down-regulated in both datasets with a p-value of less
than 0.001 in both sets (shown bold in Table 4). This is
despite the fact that the sample preparation protocols
for both datasets are different. Also, the only evidence in
the public EST transcript database, (BF372485), for a
tumor-specific splice event connecting an intron from
KLK3 gene to that of KLK2 gene is derived from pros-
tate tumor.

Conclusions
Deep sequencing of RNA provides a promising means of
understanding the role of alternative splicing in cancer.
A reference database of splice events, such as SPEventH,
provides a useful tool to expedite the analysis of RNA-
seq data, while also providing a ready link between raw
data and existing body of knowledge necessary for bio-
logical interpretation and downstream validation. To
our knowledge SPEventH database is the only splice
event database that includes splice junctions resulting
from alternative 5’ and 3’ events, a class of splicing that
is also prevalent, and understudied, in human. The key
attributes of this database are high-confidence, non-
redundancy, detailed annotations, and simple format for
ease of use.
We have demonstrated the value of SPEventH in the

identification of prostate tumor specific splicing from
RNA-seq datasets. We have identified a large number of
tumor-specific splice events in prostate cancer and have
authenticated the findings by computing base-level
expression immediately around the donor and acceptor
sites for each differentially expressed splice event. Also,
the significance of the hundreds of splice events with
p-values less than 0.001 was addressed by clustering the
20 samples using the RPKM values for these events. Our
observation is that despite normalizing for sequence
coverage using RPKM, samples with low coverage could
not be clustered using the signature events. This sug-
gests that for profiling splicing at least 30–40 million
reads may be necessary.
Here, RNA-seq datasets generated by two independent

groups have been compared to validate the findings. We
find that the most significant events from the two data-
sets are quite divergent, suggesting either heterogeneity
in the cancer types or differences in sample preparation
protocols by the two groups. Since many of the most
up-regulated genes from the validation dataset
(SRP003611) had many snoRNAs ([21]) than from the
discovery dataset (SRP002628), we believe that the valid-
ation set may not have been selected for protein coding
RNAs. Despite such discrepancies, we found two splice
events from genes PPP3CA and SLC20A2 that are sig-
nificantly up- and down-regulated in a tumor–specific
fashion.
Identification of tumor-specific splice events is com-

plicated by the expression of a large number of consti-
tutive junctions from differentially expressed genes. In
order to separate those events that are purely from
differential splicing, all events from differentially
expressed genes were removed from the final signa-
ture. It is likely that many differential cancer driving
splice events from differentially expressed genes may
have been removed by this crude approach. Better
methods are needed to address this issue.
This is perhaps one of the first efforts to compare the

performance of a de novo splice prediction method such
as Tophat to a splice detection method such as SPEventH
in the identification of tumor-specific splice signatures.
The de novo method like Tophat is considered attractive
for their capacity to discover novel events. However, we
see that Tophat performs poorly in predicting known
splice events including constitutive junctions of highly
expressed genes consistently across large number of sam-
ples. On the contrary, detection methods like SPEventH
are not only sensitive for known events but are amenable
for comparison across large number of samples. Also, by
augmenting predicted splice events from gene prediction
algorithm, discovery is also built into SPEventH-based
profiling of splicing across large number of samples.
With advancing sequencing technologies, improving bio-
informatics tools, and proliferating public data sets a
reference database of annotated splice events in human
will mature and will become critical for profiling alterna-
tive splicing in biological samples.



Table 4 Splice events up-and down-regulated in a tumor specific fashion with a p-value of < 0.0001

Sl.No Gene name Source of evidence Are they from alt.
splicing region?

P-value Fold-change
(log2)

Base level expression
around splice sites

1 TARP BC105589.J1-2 TRUE 9.08E-05 1.65501 ✓

2 SH3RF1 NM_020870.J11-12. FALSE 2.32E-05 1.602221 -

3 PPP3CA NM_000944.J5-6 TRUE 2.60E-05 1.52093 ✓

4 MARCH6 NM_005885.J9-10 TRUE 2.48E-05 1.501025 -

5 ARFGAP3 NM_014570.J2-3 TRUE 6.28E-05 1.441878 ✓

6 TAOK3 NM_016281.J18-19 FALSE 4.00E-05 1.379249 ✓

7 EIF2AK4 NM_001013703.J37-38 TRUE 3.15E-06 1.346129 -

8 TMEM87A NM_015497.J7-8 TRUE 3.81E-05 1.318233 ✓

9 TOM1L1 NM_005486.J5-6 TRUE 1.14E-05 1.222369 ✓

10 FERMT3 NT_033903.311.J10-11 FALSE 5.09E-05 1.211549 -

11 RPL7L1 NM_198486.J2-3 TRUE 4.14E-05 1.200866 -

12 TTC3 NM_003316.J18-19 TRUE 6.18E-05 1.183933 -

13 ACSL3 NM_004457.J12-13 TRUE 6.56E-05 1.158874 ✓

14 SF3B1 NM_012433.J4-5 TRUE 8.85E-05 1.147913 ✓

15 KLK3 BF372485.J1-2. TRUE 8.13E-05 1.14738 -

16 CTBP2 NM_001083914.J2-3 TRUE 6.29E-05 1.114432 ✓

17 SR140 NM_001080415.J25-26 TRUE 6.82E-05 1.109745 -

18 GTF3C1 NM_001520.J29-30 FALSE 5.11E-06 1.080653 -

19 CHEK1 NT_033899.609.J6-7 TRUE 6.83E-05 1.071581 ✓

20 C15orf44 NM_030800.J11-12. TRUE 2.45E-05 1.058924 -

21 CCDC14 NM_022757.J6-7 TRUE 1.26E-05 1.018248 -

22 KIAA0368 NM_001080398.J30-31 TRUE 6.62E-05 1.009773 ✓

23 COPZ1,MIR148B NM_016057.J3-4 TRUE 1.92E-05 1.001943 ✓

24 ECH1,HNRNPL NM_001533.J4-5 TRUE 1.64E-05 0.991637 ✓

25 CNDP1 chr18.71.004.a.J2-3 TRUE 4.40E-05 0.97475 -

26 NULL CN480760.J3-4 FALSE 5.32E-07 0.954029 ✓

27 BCLAF1 NM_014739.J8-9 TRUE 2.87E-05 0.905132 ✓

28 SON NM_138927.J10-11 TRUE 2.17E-05 0.902497 ✓

29 HSP90B1 NM_003299.J11-12 TRUE 1.11E-05 0.881922 ✓

30 TTC19 NM_017775.J3-4 TRUE 8.24E-05 0.87852 -

31 TSPAN1 NM_005727.J6-7 TRUE 9.96E-05 0.873753 ✓

32 NET1 NM_001047160.J6-7 TRUE 1.90E-06 0.869833 ✓

33 ATXN10 NM_013236.J4-5 TRUE 8.27E-05 0.826939 ✓

34 CANT1 NM_001159772.J3-4 TRUE 1.80E-05 0.793932 -

35 CCDC53 NM_016053.J3-4 TRUE 2.60E-05 0.780735 -

36 HADHA NM_000182.J7-8 TRUE 8.58E-05 0.758566 -

37 CBS NT_030188.38.J3-4 FALSE 4.96E-05 0.745529 -

38 SLTM NM_024755.J4-5 TRUE 6.69E-05 0.675305 ✓

39 DDX5 NM_004396.J3-4 TRUE 9.69E-05 0.671894 ✓

40 HSPA8 BG699643.J2-3 TRUE 1.46E-05 0.609402 ✓

41 LYNX1 NM_023946.J2-3 TRUE 4.67E-05 −1.56988 ✓

42 KLHL29 NM_052920.J10-11 FALSE 7.16E-05 −1.33184 ✓

43 ITGA3 NM_002204.J17-18 TRUE 1.59E-05 −1.23949 ✓

44 CNN2 NM_004368.J6-7. TRUE 2.77E-05 −1.19031 ✓
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Table 4 Splice events up-and down-regulated in a tumor specific fashion with a p-value of < 0.0001 (Continued)

45 SIN3A NT_010194.1124.J12-13 FALSE 6.71E-05 −1.15772 ✓

46 LAMA5 NM_005560.J78-79 FALSE 5.75E-05 −1.13839 ✓

47 DPM2 NM_003863.J2-3 TRUE 2.18E-05 −1.11538 ✓

48 PINK1 NM_032409.J6-7 TRUE 1.10E-05 −1.09024 ✓

49 NCAPD2,SCARNA10 NT_009759.130.J28-29 FALSE 4.16E-05 −1.06536 -

50 EML2,MIR330 NM_012155.J17-18 FALSE 3.73E-05 −1.04227 ✓

51 HEATR7A NM_032450.J42-43 TRUE 5.59E-05 −0.97289 -

52 HEATR7A NM_032450.J18-19 TRUE 1.80E-05 −0.96627 ✓

53 ARAP1,STARD10 NM_001040118.J12-13 FALSE 6.18E-05 −0.95743 ✓

54 ALS2CL NM_147129.J15-16 FALSE 9.60E-05 −0.94678 ✓

55 RAB25 chr1.155.009.a.J2-3 FALSE 2.75E-05 −0.91566 ✓

56 NULL NT_030188.20.J5-6 FALSE 5.90E-05 −0.88101 -

57 ATF6B,TNXB NM_019105.J22-23 FALSE 9.19E-05 −0.85967 ✓

58 RUVBL2 NM_006666.J11-12 FALSE 3.78E-05 −0.75383 ✓

59 MAP3K12 NM_006301.J4-5 TRUE 6.44E-05 −0.72161 ✓

60 AIFM2 NM_032797.J7-8 FALSE 2.12E-05 −0.72049 ✓

61 ATP2A2 NM_001681.J19-20 FALSE 7.93E-05 −0.66293 ✓
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Materials and methods
Results reported in this manuscript did not involve any
experimental work on human or animal samples. All
reported findings are obtained by bioinformatics analysis
on the data downloaded from NCBI repository of Short
Read Archive as listed in Table 2.

Construction of SPEventH database
A reference splice event database, SPEventH, containing
probes of optimal length representing exon-exon and
exon-intron junction sequences for 731,954 splice events
Figure 5 Base level expression around the donor and acceptor sites o
is derived from a database of non-redundant splice junc-
tions in human, SEHS1.0 [22], which is validated for
genome-wide profiling of alternative splicing using
microarray technology [23]. The SEHS1.0 was created
using the alignment of 8.5 million transcripts including
8,089,335 ESTs, 287,440 mRNAs, 34,389 Refseq, 66,803
known genes and 99,128 predicted genes onto the hg18
assembly of the human genome [24]. Construction of
SEHS1.0 involved parsing and processing of 8.5 million
aligned full-length and partial transcript sequences,
identifying the splice sites, applying an alignment quality
f a splice junction from gene PPP3CA gene in all 20 samples.



Table 5 PCR primers for events for which a transcript sequence was available in the public databases

Sl. no SpliceJunctionID_GeneName Amplicon Forward primer Reverse primer

1 JHS32215053_TARP 119 TCCCGGAACAAAGCTTATCA AAGACCAGGGTTCCAGTCCT

2 JHS31939933_SH3RF1 113 AGTTCCCATCGCTCCACCT GAGGAGGATAGGAAACCACCA

3 JHS31912679_PPP3CA 106 GTGTGTGCATGGTGGTTTGT CAGGATATCACACATAGGTCCA

4 JHS31958799_march6 108 GGGAAAGAATGCTAGGACTTGA GGTAAGGGCAAAATGCAAAA

5 JHS31704238_ARFGAP3 121 GGGCAAGCATAACCTATGGA TGAAACCATGACCAGTTGGA

6 JHS30608278_TAOK3 132 AAAGCATGTCATGGAACTTCG TCCAACTGGTGATTCTTGAGTG

7 JHS30807650_EIF2AK4 103 TGAAATTCTGGCTGTGGATCT CAGCTGCTTCACAGTTGTGTT

8 JHS30813189_TMEM87A 114 TGGCATTTCATCCTCAAAGG AAGGGATAGTCTTCAAGTGTGAGG

9 JHS31115850_TOM1L1 117 CAGAAGCAGAGGCTGAAACA CAGTCGAGTTCTTTGGAGCA

10 JHS32114870_RPL7L1 148 CGGAGCAAGAGCAAAGAAAA CGCTTAAACCTGAGCCCTTT

11 JHS31615632_TTC3 110 GCTGAACGGTTTAGATCCTCA CAGGCTGTCCTATTCCAAGG

12 JHS31498135_SF3B1 116 AGCATAGGCGGACCATGATA TTGTTCTCGCATTACATCCA

13 JHS31332823_KLK3 146 ACAGCTGAGCCACTCTGAGG CAGGGGTCGGGGAGATATAG

14 JHS30347840_CTBP2 106 TCCCTTAAAAAGACGGACAGC AGGGGAACTTGCAGGAGTCT

15 JHS31820386_SR140 100 GCCAGAGTTTTCAGGAGCAA TCTTTCTTGTCTCTTTCTCGTTCTC

16 JHS30945721_GTF3C1 123 GGTGCTTCAGAACCTGATCC AAGGCCTTCACAAGAACGTG

17 JHS30838314_C15orf44 131 GCCTGCAGACAGATGTACAGA TTTCAGCAGGTCCAGGAAAC

18 JHS31803136_CCDC14 125 TCTCAGGCAACTCCTCATTCT GCAAACTGACTGTTGCCATC

19 JHS32473823_KIAA0368 107 GGAGAGACAGTGGTATTTCAAGG GGCTGGCTAAGATCACTTGC

20 JHS30556221_"COPZ1,MIR148B" 107 GACGACACCTACCCCAGTGT ACTGTCAGGCCTTCCAAGAG

21 JHS31292790_"ECH1,HNRNPL" 104 AGAATGGAGTTCAGGCGATG CAGAGTGCAACAGCCAGAATA

22 JHS32163374_BCLAF1 107 CCAAGTACCCTGAGGAAGCA CGAAGGTCAGCAGAGTCACA

23 JHS31612151_SON 126 GGGAACTTCTCTGCTGCAAT ATCAGGGCCACTATCATGGA

24 JHS30594323_HSP90B1 118 GTCAAGGGTGTGGTGGACTC TCATGTCCAGCGTTTTACGA

25 JHS31048200_TTC19 103 ATTTTGCATGACGCTCTTCG GCTGACCCCGTATAAATGCT

26 JHS30077792_TSPAN1 103 CAAGTGTGGAACACCACCAT GGGGAAAGGCACTGTTCTCT

27 JHS30255522_NET1 101 CCCGAGGTGAACAGGATTTA TGTGAGTTCCTCTTCTGACATGA

28 JHS31707588_ATXN10 130 ATTGTTTGGGTGCATGCTTT CCTCCAGTTCTTTCATTCTTTCA

29 JHS31151584_CANT1 116 TGCTGTGGAAAGACTTCACG ATCCGGAGGGAGTGCATAG

30 JHS30592849_CCDC53 112 TGAGGAGAAACTGGCAGACC TTCAACTGTGACATCATCTAGGC

31 JHS31375495_HADHA 115 TGGACATGATGCTGACTGGT GTCCGTTCCTCTGGAGGTTT

32 JHS30830235_SLTM 113 TCTGCAGAAGAAAACAAGAGAGC TCATCTTCACCTTCTTGAGCTTC

33 JHS31129340_DDX5 124 GCCCGAAGCCAGTTCTAAAT CTTAGAGCAACTGGCCATCC

34 JHS30485155_HSPA8 109 AGTAGCAATGAACCCCACCA CACCATAAAGGGCCAATGTT

35 JHS30035592_PINK1 123 CGGAAACGGCTGTCTGAT AGCCCGAAGATTTCATAGGC

36 JHS31111518_ITGA3 117 CTGCACACAAGGGACCTTCA GCTAAGCGAGGTCTGGAGTG

37 JHS32407856_HEATR7A 112 GTCAGCATTGGGAAACGACT TCTCGCAGGAACATCAACAG

38 JHS30295263_AIFM2 123 AAGATCAACAGCTCCGCCTA ACAGTCACCAATGGCGTAGA

39 JHS32488635_DPM2 134 TACTACACCGCCTGGGTGAT AGTCCCACAAACAGGAGCAG

40 JHS31214980_CNN2 116 AGATGGGCACGAACAAGTG CAGGGACATGGAGGAGTTGT

41 JHS31314031_"EML2,MIR330" 118 GAATGGGCCACAGCTACTTG AAGCCAGCAACTTCCCATC

42 JHS31324130_RUVBL2 119 CCTGATCATGGCCACCAA TGTAGGGGGTGGTGGAGAC

43 JHS32401588_LYNX1 128 CTGATCCTGGTGGTCCTCAT GTGGTCATGCAGTAGGCAAC

44 JHS32407984_HEATR7A 136 TCAAGAGCAGCTGGGAGAAC TCCTTCAGCAGGATCTGGAG
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45 JHS31597126_LAMA5 125 GGGAGTTCTCCACGTCAGTG CACGGTGTGGTTGCTCTG

46 JHS30447530_"ARAP1,STARD10" 104 TCAACCTCTGTGTTGTTATCTGC CCACACCTTCCTGTCCATCT

47 JHS30554360_MAP3K12 107 AGCACCCCAACATCATCACT AGCCCGCAGTACCTCATACA

48 JHS31372783_KLHL29 100 GTAGTGAGTGCAGGGGACAAC TCCAGTTATCAAGCAGGGACA

49 JHS30600491_ATP2A2 106 TGTCACTCCACTTCCTGATCC GGCAAGGAGATTTTCAGCAC

50 JHS32096926_"ATF6B,TNXB" 121 CTGGGCGCAAGTACAAGATG GTCATGGTAGGCACTGCTTG

51 JHS31749149_ALS2CL 111 ACCTTCACCAGGGACCTGAC CTGTGTGTGCAGTCCTCTCC
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filter, making the set non redundant, selecting sequences
spanning the splice sites, and attaching detailed annota-
tions to the results. The quality filter has removed misa-
lignments arising from low sequence quality. Key
parameters enforced that each splice site span canonical
donor and acceptor motifs; however, splice events with
multiple sequences as evidence were included regardless
of the intron motifs. Uniqueness of a splice site was
defined by the intron start and end coordinates. Annota-
tions include the data source (such as RefSeq or GEN-
SCAN), list of accessions of sequences that provide
evidence for each splice event, intron donor and ac-
ceptor motifs, as well chromosomal coordinates and
gene symbols.
The probes in the SPEventH database are of length 56

bases including 28 bases from either exons participating
in the junctions. This length is optimized to reliably ex-
clude mapping of RNA reads of length 36 base pair,
which do not span a junction. Meaning, when 36mer
reads of length 36 bases are mapped to probes
Figure 6 Clustering of all 20 samples using all the 765 splice events w
containing 28 bases on either side of the junction, mini-
mum mapping of 8 bases into the adjoining exon is
ensured even for reads mapped staring at position one
of the probe or ending at position 56 of the probes.
Owing to the varying sequence quality of the under-

lying data sources, splice events in SPEventh differ in
evidentiary support. Approximately 58.2% of splice
events in SPEventH have experimental evidence in the
public sequence repositories. Spot checks of individual
genes such as kinesin 1A against the UCSC genome
browser provides quality assurance for the completeness
and accuracy of the data in SPEventH (Figure 8). Al-
though kinesin 1A contains 46 exons, according to its
RefSeq transcript, SPEventH reveals at least 50 exons,
including ESTs and predictions, and 91 distinct splice
events. SPEventH is available for download as a FASTA
file with annotations stored as key/value pairs in
the header line (http://resource.ibab.ac.in/SPEventH/). A
BED file from SPEventH can also be downloaded from
the same site. The count of each splice event in the BED
ith p-value <0.001 and a fold change of >1.5.

http://resource.ibab.ac.in/SPEventH/


Figure 8 An anecdotal example of all splice junctions represented in
The two vertical bars in each fat ‘H’ are exons connected by introns.

Figure 7 Clustering of ten samples from the patients with high
sequence coverage using the 672 events with p-values of
<0.001 and a fold change of >1.5 left after removing 93 events
that may have been from differential gene expression.
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format corresponds to the number of public sequences
providing evidence for the respective splice event.
Mapping short RNA reads to SPEventH
The dataset of short RNA reads derived from 20 samples
including tumor and matched normal prostate tissues
from 10 individuals is downloaded from NCBI repository
with accession IDs listed in Table 2. Tens of millions of
short reads from each sample are mapped to junction
spanning probes in SPEventH using bowtie. Two mis-
matches are allowed while mapping and only uniquely
mapped reads are considered. Parsing the bowtie output
was done by uploading the bowtie fields on to MySQL
database, creating one table per sample. Using a SQL
query, number of reads mapped to each SPEventH junc-
tions was computed and stored in another table. A mega
table is then generated from the twenty individual tables
that includes read counts of all the splice events in the
database of all samples used in the study (SRP002628).
The read counts are normalized across samples by com-
puting RPKM values. The p-value and fold change (log2)
are computed by comparing RPKMs for normal and
tumor for all events in SPEventH using R statistical
SPEventH database for the gene KIH1A shown on UCSC browser.
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package. A reduced table of events with p-value <0.001
for all normal and tumor samples is created. A hierarch-
ical clustering of all 20 samples based on the RPKM
values for selected events in each sample is performed.

Mapping short RNA reads to hg18 assembly
Tophat program, version 1.1.2, with default parameters
is used to map reads from all 20 samples onto hg18 gen-
ome assembly. The default parameters of Tophat and
the genome assembly versions are consistent with map-
ping of reads to SPEventH. The junction coordinates are
normalized to those of SPEventH for comparison by
using a perl script and MySQL database.
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