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Abstract

Background: Identification of prognostic biomarkers is hallmark of cancer genomics. Since miRNAs regulate
expression of multiple genes, they act as potent biomarkers in several cancers. Identification of miRNAs that are
prognostically important has been done sporadically, but no resource is available till date that allows users to study
prognostics of mMiIRNAs of interest, utilizing the wealth of available data, in major cancer types.

Description: In this paper, we present a web based tool that allows users to study prognostic properties of miRNAs
in several cancer types, using publicly available data. We have compiled data from Gene Expression Omnibus (GEO),
and recently developed “The Cancer Genome Atlas (TCGA)", to create this tool. The tool is called “PROGmIR" and it

is available at www.compbio.iupui.edu/progmir. Currently, our tool can be used to study overall survival
implications for approximately 1050 human miRNAs in 16 major cancer types.

Conclusions: We believe this resource, as a hypothesis generation tool, will be helpful for researchers to link miRNA
expression with cancer outcome and to design mechanistic studies. We studied performance of our tool using
identified miRNA biomarkers from published studies. The prognostic plots created using our tool for specific
miRNAs in specific cancer types corroborated with the findings in the studies.
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Background

MiRNAs are small non coding RNA molecules, 18-25
bases at maturity, and exert a profound effect on regula-
tion of genetic machinery of the cell. MiRNAs are found
in both plant and animal cells and act as key regulators
of gene expression. The first miRNA, a small transcript
of lin-4 gene, was discovered as an antisense molecule to
lin-14 mRNA in C. elegans [1]. Lin-14 gene synthesizes
lin-14 protein, lower levels of which are essential for nor-
mal embryonic development of C. elegans larvae. The first
miRNA to be categorically studied was 21 nucleotide long
let-7 miRNA [2]. MiRNA were subsequently also discov-
ered in plants [3]. MiRNA are found in almost every spe-
cies ranging from unicellular organisms such as yeast to
primates, but the number of miRNAs in different species
ranges from a few dozens to thousands.
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Since miRNAs act as key regulators of gene expres-
sion, their role is evident in several diseases where gene
expression is altered. For this reason, despite their recent
discovery, miRNAs have been studied to a great extent in
cancers, where pathological changes are bought about pri-
marily due to altered gene expression. Recent studies have
suggested a role of miRNAs in many cancers. MiRNAs
have so far been reported to be up or down regulated in
several types of cancers [4]. In cancer, miRNAs may
act as tumor suppressors or tumor promoters (oncogenes).
MiR17-92 cluster is a prominent oncogenic miRNA cluster
[5], whereas miR-34 family, which is induced by the tumor
suppressor gene p53 [6], displays tumor suppressor activity
in multiple cancers. MiRNAs have been reported to play
these roles in both cancers of hematopoietic origin as well
as in solid tumors. Also, several miRNAs have been found
to be directly associated with tumor progression and me-
tastasis [7-10].

The first miRNA to be associated with cancer was dis-
covered in Chronic Lymphocytic Leukemia (CLL). Croce
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et al discovered a novel miRNA signature associated
with prognosis and disease progression in CLL [11]. By
systematic profiling of miRNAs in several cancers, Golub
et al [12] observed a general downregulation of miRNAs
in cancer samples. Subsequently, miRNAs were disco-
vered in several cancers to be of prognostic importance.
For instance, Monzo et al recently discovered a 25
miRNA signature for Hodgkin’s Lymphoma (HL) and
also identified miR-135a as a key player in prognostic
outcome of HL [13]. In breast cancer, miR-155 [14] and
miR-21 [15] are upregulated, while miR-10b has been
implicated in invasiveness and metastasis of breast can-
cer [7]. MiR17-5p, miR-20a, miR-335, and miR-126
along with other miRNAs have also been found to be of
importance in breast cancer [8,16]. In two separate stud-
ies, miR-143 and miR-145 were found to be downregu-
lated in colorectal cancer [17,18]. Murakami et al
analyzed Hepatocellular Carcinoma (HCC), chronic he-
patitis and normal liver tissue for miRNAs and found
an eight miRNA signature predictive of HCC [19]. MiR-
224, miR-18, and pre-mir-18 were upregulated and miR-
199a*, miR-200a, miR-199a, miR-125a, and miR-195
were downregulated in HCC samples compared to nor-
mal liver samples. In recent studies, miR-21, miR-10b,
and miR-222 were found to be upregulated and miR-
200c and miR-203 were downregulated in HCC. In Non
Small Cell Lung Cancer (NSCLC), miR-128b functions
as a tumor suppressor miRNA by controlling the pro-
duction of EGFR [20]. MiR-128b along with a five
miRNA signature constituting of miR-221, miR-137,
miR-372, miR-182, and let-7 has been shown to be pre-
dictive of outcome in NSCLC patients [21]. In pancreatic
cancer, separate studies identified miR-126 as a bio-
marker for pancreatic cancer [22-24].

MiRNA regulate gene expression in several ways, espe-
cially in pathological situations. Altered expression of
some genes, particularly transcription factors, may result
in altered expression of other miRNAs, which as a feed
forward action causes altered expression of yet other
genes resulting in heavy deregulation of normal molecu-
lar machinery of the cell. For example, we reported re-
cently specific down-regulation of miR-22 in metastatic
breast cancer cells compared to primary tumor cells,
which results in elevated expression of the transcription
factor EVI-1 in metastatic cancer cells [25]. EVI-1 being
an epigenetic modulator of gene expression can pro-
foundly alter gene expression pattern in metastatic cells.

Altered expression of miRNAs in cancers may occur
due to genetic abnormalities, altered transcription,
altered post-transcriptional events, or altered epigenetic
factors. Consequently, dysregulated miRNAs alter cellular
machinery at genomic/epigenomic level. For instance, miR-
29 inhibits the expression of DNMT3A and DNMTS3B,
which are involved in DNA methylation in lung cancer
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[26], whereas miR-101 has been shown to regulate histone
methyltransferase EZH2 in prostate cancer [27]. MiR-15a
and miR-16-1 were one of the first miRNAs to be discov-
ered whose expression was altered due to genetic abnor-
mality in chronic lymphocytic leukemia [28]. In a global
analysis of mouse genome, several miRNAs were found to
be associated with sites of frequent genomic abnormalities
[29]. A similar trend was observed in the human genome
while studying cancers [30]. Altered transcriptional regu-
lation of miRNAs is also a major cause of deregulation of
miRNA expression in certain cancers. It has been noted
that transcription factors (TFs) may induce miRNAs by
activating transcription of pri-miRNAs. Several miRNAs
have also been experimentally shown to be directly regu-
lated by TFs in cancers and quite often these microRNAs
target the same transcription factors that induce them as a
feedback loop [31-39]. miRNA expression can also be
altered during post transcriptional events. For instance,
levels of miRNA processing enzymes DROSHA and
DICER were found to be altered in many cancers [40-44].
Also, in silico analysis of breast cancer tissue specimens
has identified CpG islands near dozens of miRNAs gen-
omic locations [45]. Furthermore, DNA hypomethylation
induced release of miRNA silencing in colorectal cancer
[46] suggests an epigenetic regulation of miRNA expres-
sion in cancers.

Altered miRNA expression can bring about patho-
physiological changes in cellular machinery in several
ways. Important mechanisms are induction of apoptosis,
alteration of cell cycle, increased invasive and metastatic
characteristics in the cells. For example, miR-29b [47],
miR-34s [31], miR-15a and miR-16 [48] participate in
tumorigenesis by targeting anti-apoptotic genes. MiR-221
and miR-222 in Glioblastoma (GBM) [49] and prostate
cancer [50] have been shown to target p27, which restricts
the cell cycle to G1 stage by preventing G1-to-S transition.
As mentioned before, miR-10b [6] is suggested to impart
metastatic characteristics to the cell, while miR-18 and
miR-19 have been reported to repress TSP-1 and CTGF
[37], both control angiogenesis.

All the above mentioned studies emphasize the remark-
able multifaceted role miRNAs play as potent biomarkers
in cancer. The biomarker capabilities of miRNAs have
been studied sporadically (in specific studies for specific
cancers), and the data for many such studies are available
in public repositories. Global profiling of miRNAs in
cancers has been done using the traditional PCR techni-
ques, but more frequently using array platforms and se-
quencing. Recent advances in sequencing technologies
have enhanced our capacity to study the global transcrip-
tome of cancer populations, including miRNAs and other
non-coding RNAs. Currently, there is no resource avail-
able which enables users to study biomarker capabilities
of miRNAs in different cancers. Researchers have to go
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through searching and processing publically available
datasets for identifying and published information on prog-
nostic implications of miRNA in cancer of interest. The
wealth of data available publically thus remains underuti-
lized, and this motivated us to create a platform where
miRNAs can be studied for several types of cancers as
prognostic biomarkers. In this paper, we present a first of a
kind web based tool for studying prognostic importance of
miRNAs in several types of cancers. Our tool is called
PROGmIR, and it is available online freely for academic
and non commercial purposes. PROGmiR allows users to
study overall survival in form of prognostic plots using
miRNA expression data from several publically available
patient series. The data in our tool comes from Gene Ex-
pression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA) [51]. We have compiled the data on 16 different
cancer types from both these sources. A list of cancer types
available in our database along with other statistics on the
data sets is available in Table 1. Our tool uses miRNA ex-
pression data from these datasets to create overall sur-
vival Kaplan-Meier (K-M) plots. Plots can be created for
individual miRNAs as well as for average expression of a
group (signature) of miRNAs in any of the cancer men-
tioned in Table 1.

Currently, our tool is restricted to studying only over-
all survival, but in the future, as more data become pub-
lically available, we aim to extend our tool to enable
users to study additional prognostic measures such as
metastasis free survival, recurrence free survival, and
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present this tool as a hypothesis generation tool only. In
future versions, we would also like to add demographic
and clinical covariates such as age, race and hormonal and
therapy statuses to be included in the analysis to produce
more meaningful and accurate prognostic plots. Since
miRNAs have significant importance as biomarkers, and
since our tool covers almost all major cancers from more
than 10 tissues of origin, we believe this tool will help
researchers in identifying novel prognostic markers as well
as in formulating hypothesis for mechanistic studies in the
future. In particular, our tool will allow investigators to
obtain preliminary evidence on whether microRNA func-
tions as a tumor suppressor or oncogene across all cancer
types or has dual role depending on cancer type.

Construction and content

Workflow

To create prognostic plots for miRNAs, our application
uses miRNA expression and overall survival data.
MiRNA expression data are in form of array expression
data or sequencing data based on the platform. Our
application is a web based PHP [56] script which uses
R [57] in the backend to compute survival plots for
miRNAs of interest. The R script uses library ‘Survival’ for
creating survival plots. Survival plots can be created for
3-year, 5-year or full follow up survival time. Figure 1
describes the workflow of the application. Prognostic plots
in our application can be created for single or multiple
miRNAs. When multiple miRNAs are entered, our

effects of specific therapies using our tool. Currently we  application creates prognostic plots for miRNAs
Table 1 Description of various data sources included in progmir database
Cancer type Dataset  Source Platform No of No of  Reference
samples miRNAs*
1 Adrenocortial Carcinoma GSE22816  GEO Agilent-025987 Human miRNA Microarray 22 200 [52]
Release 14.0

2 Acute Myeloid Leukemia LAML TCGA lllumina GA miRNA Seq 164 704 [51]
3 Brain Lower Grade Glioma LGG TCGA  lllumina HISeg miRNA Seq 29 1046 [51]
4 Glioblastoma multiforme GBM TCGA UNC miRNA 8X15K 487 470 [51]
5 Breast Invasive Carcinoma BRCA TCGA lllumina GA and HiSeq 727 1046 [51]
6 Non-small-cell Lung Cancer GSE16025 GEO mirVANA miRNA Bioarray V2 60 328 [53]
7 Small Cell Lung Cancer GSE27435 GEO Capitalbio mammal microRNA V3.0 42 1638 [54]
8  Lung Adenocarcinoma LUAD TCGA lllumina GA and HISeq 79 1046 [51]
9  Lung Squamous Cell Carcinoma LUSC TCGA  lllumina GA and HiSeq 185 1046 [51]
10 Hepatocellular Carcinoma GSE31384 GEO CapitalBio custom Human microRNA array 166 682 [55]
11 Head and Neck Squamous Cell Carcinoma  HNSC TCGA lllumina GA and HiSeq 89 1046 [51]
12 Ovarian Cystadenocarcinoma ov TCGA  UNC miRNA 8X15K 46 705 [51]
13 Rectal Adenocarcinoma READ TCGA lllumina GA miRNA Seq 38 705 [51]
14 Renal Clear Cell Carcinoma KIRC TCGA lllumina GA and HISeq 546 1046 [51]
15 Stomach Ademocarcinoma STAD TCGA  lllumina GA and HiSeq 79 1046 [51]
16  Uterine Corpus Endometroid Carcinoma UCEC TCGA lllumina GA and HiSeq 358 1046 [51]
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Users insert miRNA ID(s) Users select cancer type
on home page and survival time cutoff

Application searchesfor relevant datasetsin
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Y

In selected datasets, expression values for
selected miRNA is retrieved along with
survival time and status variables. For
multiple miRNAs, sum of miRNA expression is
used for creating signature survival plots

3 )
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High and low expression categories are
defined for samples with higher than and
lower than Median values for mirna
expression respectively

l

Survival plots are created using ‘coxph’ and
‘survfit’ functions of R library survival. Plots
are exported as png files.

—

Figure 1 Line diagram delineating workflow of PROGmiR.

individually as well as a combined prognostic plot for
all miRNAs entered. This makes it possible to study
prognostic implications of a miRNA signature in different
types of cancer. For combined plots, sum of miRNA
expressions of all miRNAs entered is computed and used
in creation of prognostic plots.

Users enter miRNA ID(s) on the home page of web
application and select the cancer type in which prognos-
tic plots have to be visualized. For some cancer types,
there are more than one expression dataset present. For
each dataset, one prognostic plot is created for each
miRNA and one plot is created for sum of expressions
of all miRNAs entered combined. The program retrieves
expression data for each entered miRNA along with cor-
responding survival annotations. Hazard ratio and p
value are then calculated using function ‘coxph’ and
prognostic plots are visualized using function ‘survfit,
both functions in library ‘survival’ for R. To estimate
hazard ratio and corresponding p value, continuous
miRNA expression is used. For creating prognostic plots,
samples are categorized into ‘HIGH” and ‘LOW’ miRNA
expression categories by bifurcating at median miRNA
expression. The plots are exported as .png files and these
files are visualized on the results page as individual
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miRNA plots and sum of expression plots divided by
datasets. For each plot, ‘exp(Coef)’ as estimate of hazard
ratio, and Log likelihood p value generated by the ‘coxph’
model are also provided.

Data

We downloaded miRNA expression data from GEO and
TCGA. GEO data were downloaded for separate plat-
forms as described in Table 1. The TCGA data were in
form of RNA sequencing data except for Glioblastoma,
where it was on array platform. Sequencing data from
TCGA were available in form of ‘reads per million
(Level 3) for each miRNA. GEO data were downloaded
in form of series matrices from the GEO website. Sur-
vival data associated with clinical samples were also
downloaded from the respective data sources along with
the expression data. The time to death data were con-
verted into days to death for data sources where months
or years to death were reported. Batch effect arising due
to processing of samples at different times was removed
statistically, if present. In most cases, unlike mRNA
expression data, the data available were in already pro-
cessed format and did not have to be normalized further.
Since we do not combine expression data from all data-
sets for a particular cancer type, any other normalization
was again not relevant. The data were stored as R data
sets and computation is done directly using these data-
sets in our application.

Web application

We have created a web application for implementation
of our tool. As mentioned previously, the web applica-
tion was written in PHP5 and uses R scripts in backend
to create survival plots. The web application consists of
a home page and results page. Users can input individual
miRNAs or a comma delimited list of miRNAs on the
home page. Users also select one cancer type in which
prognostic plots have to be created. Also available on
the home page is options to truncate plots to a 3 Yr or 5
Yr follow up or to create plots for full follow up time.
Since different studies have been performed on different
platforms, the number of miRNAs profiled in each study
differs. Prognostic plots are created for each dataset for
available miRNAs only. Upon submitting the informa-
tion on home page, results in form of KM plots are pro-
vided on the results page.

Utility and discussion

We have compiled miRNA expression data from 16 can-
cer types in our data base. Median survival and follow-
up times as well as number of events for each dataset
have been summarized in Table 2. We used only overall
survival data in our database, as other survival functions
such as metastasis free survival and relapse free survival,
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Table 2 Global statistics on survival related variables for the datasets available in PROGmiR

Survival event No event

Cancer type Dataset Total no No of Median survival® No of Median survival®”
of samples  samples (range) samples  (range)

1 Adrenocortial Carcinoma GSE22816 22 6 600 (120-4860) 16 885 (60-4980)
2 Acute Myeloid Leukemia LAML 164 100 303 (28-1706) 64 699 (28-2861)
3 Brain Lower Grade Glioma LGG 29 23 788 (96-1915) 6 1317 (242-6423)
4 Glioblastoma multiforme GBM 487 383 377 (3-3880) 104 266 (3-2817)
5 Breast Invasive Carcinoma BRCA 727 91 1563 (157-4456) 636 466 (1-6795)
6 Non-small-cell Lung Cancer GSE16025 60 26 1980 (210-2490) 34 1500 (120-2580)
7 Small Cell Lung Cancer GSE27435 42 18 743 (234-2400) 24 1314 (426 -2490)
8 Lung Adenocarcinoma LUAD 79 27 701 (22-1318) 52 400 (1-2161)
9 Lung Squamous Cell Carcinoma LUSC 185 77 544 (12-5296) 108 640 (3-4299)
10 Hepatocellular Carcinoma GSE31384 166 73 450 (30 - 2280) 93 1320 (420-2430)
11 Head and Neck Squamous Cell Carcinoma ~ HNSC 89 27 395 (128 - 2318) 62 359 (45 - 4115)
12 Ovarian Cystadenocarcinoma oV 46 21 887 (9-1756) 25 912 (141 - 2099)
13 Rectal Adenocarcinoma READ 38 3 316 (59 - 1184) 35 183 (28 — 2192)
14 Renal Clear Cell Carcinoma KIRC 546 173 722 (2-2830) 373 1307 (4 - 3377)
15 Stomach Adenocarcinoma STAD 79 14 258 (19 - 881) 65 109 (2 - 2131)
16 Uterine Corpus Endometroid Carcinoma UCEC 358 27 413 (58 — 3251) 331 527 (1 = 5690)

§ in days.
* Follow up time.

were not available for all studies. Studies in which
numbers of survival events were less than 5 were not
included in the database. In TCGA data, there is an innate
problem of several samples been annotated as having a
zero follow-up time. Such samples were removed from
the final datasets. Our final data consists of a total of 3117
samples in 16 cancer types and appximately 1050 miRNAs
profiled. Unlike related applications available for studying
survival implications of mRNAs in breast and ovarian can-
cers [58,59], we did not merge all samples for the same
cancer type into one large dataset owing to the fact
that it may lead to over-fitting of data due to normalization
of samples coming from different studies. For this reason,
we kept different datasets belonging to the same cancer
type separate.

For assessing performance of our tool, we created sur-
vival plots for miRNAs that have been implicated as hav-
ing prognostic importance in published studies. Dahiya
et al [60], have shown that a high expression of miR-21
correlates with poor overall survival in renal clear cell
carcinoma. We used our tool to create prognostic plot
for miR-21 in renal cell carcinoma in TCGA data. Figure 2
shows a poor overall survival for patients with high miR-
21 expression compared to patients having low miR-21
expression levels. The hazard ratio and p value for the
proportional hazards model is also given in the figure.

In another study, Chen et al [61], have demonstrated
down-regulation of several isoforms of miR-181 (miR-
181-a, miR-181-b, miR-181-c and miR-181-d) being

correlated with poor overall survival in acute myeloid
leukemia (AML). We used our tool to create prognostic
plots for the above mentioned miRNA isoforms using
TCGA data. All the isoforms and combined sum of
expression of isoforms showed the same pattern in plots
created using our tool as shown in the paper, with poor
overall survival observed in the group having low expres-
sion of miR-181 isoforms. Additional file 1: Figures S1-S4
provided in supplementary data show prognostic plots
for miR-181 isoforms in AML data. Additional file 1:
Figure S5 shows a prognostic plot for sum of the 4 miRNAs
showing correlation of overall survival with sum of miRNA
expression. Similarly, in another study, Annilo et al [62],
have demonstrated low expression of miR-374a to be
associated with poor outcome in non small cell lung can-
cer. We used our tool to create overall survival prognostic
plots for miR-374a in squamous cell carcinoma of lung
(LUSC) using TCGA data. The plot (Additional file 1:
Figure S6) showed the miRNA low expression arm dem-
onstrating a poor outcome in LUSC samples.

In each of the case studies we performed, prognostic
plots created by our tool corroborated with the findings
in the published studies. Since this tool is basically a
pipeline, this fact makes the tool validated. Somasun-
daram et al [63] recently used the TCGA data itself to
identify 10 miRNAs having prognostic implications in
glioblastoma. Our tool used the same data and showed
similar results (Additional file 1: Figures S7-S16) for the
selected 10 miRNAs.
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Figure 2 Prognostic plot created using PROGmIR for miR-21 identified as prognostic biomarker in Renal Clear Cell Carcinoma using

In future updates to our tool, we plan to expand the
repository of our tool by adding new datasets as and
when they become available. We also plan to include
more survival functions, such as ‘metastasis free survival’
and ‘relapse free survival’ to our tool in future versions.

Conclusions

We believe this tool will prove useful for hypothesis
generation and testing as well as for mechanistic studies.
Considering the impact of miRNAs as prognostic biomar-
kers in several cancer types, such preliminary findings will
also benefit researchers formulate research plans. Since our
tool covers data from all major cancer types, researchers
working on wide array of cancers will be able to formulate
their study hypotheses based on findings from this tool.

Availability and requirements

The database is available freely for non commercial and
academic usage at www.compbio.iupui.edu/progmir.

Additional file

Additional file 1: Figures S1-S4. Prognostic plot created using
PROGmMIR for isoforms a, b, ¢ and d of miRNA hsa-miR-181 identified as
prognostically important biomarker in Acute Myeloid Leukemia (AML) by

Chen et al, using TCGA data. Figure S5. Prognostic plot for sum of
expression of hsa-mir-181 isoforms a,b,c and d in TCGA AML data. Figure
S6. Prognostic plot created using PROGmIR for miRNA hsa-miR-374
identified as prognostically important biomarker in Lung Squamous cell
carcinoma (LUSC) by Annilo et al, using TCGA data. Figures S7-S16.
Prognostic plot created using PROGmIR for 10 miRNAs identified as
prognostically important biomarker in Glioblastoma (GBM) by
Somasundaram et al, using TCGA data.
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